\({ \sqrt{2x+2\sqrt{2x}+1} }-{ \sqrt{2x-2\sqrt{2x} }=2}\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

cần gấp thì mình làm cho 

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)

\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(< =>x+1=\sqrt{x+1}\)

\(< =>\frac{x+1}{\sqrt{x+1}}=1\)

\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)

10 tháng 8 2020

ĐKXĐ : \(x\ge-1\)

Bình phương 2 vế , ta có :

\(x^2+2x+1=x+1\)

\(\Leftrightarrow x^2+2x+1-x-1=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\

Vậy ...............................

29 tháng 8 2017

\(2\left(x-2\right)\left(\sqrt[3]{4x-4}+\sqrt{2x-2}\right)=3x-1\)

\(\Leftrightarrow2\left(x-2\right)\left[\left(\sqrt[3]{4x-4}-2\right)+\left(\sqrt{2x-2}-2\right)\right]+8\left(x-2\right)=3x-1\)

\(\Leftrightarrow2\left(x-2\right)\left[\frac{4x-12}{\sqrt[3]{\left(4x-4\right)^2}+2\sqrt[3]{4x-4}+4}+\frac{2x-6}{\sqrt{2x-2}+2}\right]+\left(5x-15=0\right)\)

\(\left(x-3\right)\left[\frac{8\left(x-2\right)}{...}+\frac{4\left(x-2\right)}{...}+5\right]=0\Leftrightarrow x=3.\)

18 tháng 8 2020

Đặt \(a=\sqrt{2x^2+16x+18};b=\sqrt{x^2-1}\left(a,b\ge0\right);\)

Ta có: \(a+b=\sqrt{a^2+2b^2}\Rightarrow a^2+2ab+b^2=a^2+2b^2\)

\(\Leftrightarrow b\left(2a-b\right)=0\)

TH1: \(\sqrt{x^2-1}=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}\left(TM\right)}\)

TH2: \(2\sqrt{2x^2+16x+18}=\sqrt{x^2-1}\Leftrightarrow7x^2+64x+72=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-32+3\sqrt{57}}{7}\left(TM\right)\\x=\frac{-32-3\sqrt{57}}{7}\left(KTM\right)\end{cases}}\)

18 tháng 8 2017

ĐK:\(-1\le x\le1\)

\(\sqrt{\frac{1+2x\sqrt{1-x^2}}{2}}=1-2x^2\)

\(\Leftrightarrow\frac{1+2x\sqrt{1-x^2}}{2}=4x^4-4x^2+1\)

\(\Leftrightarrow\frac{2x\sqrt{1-x^2}}{2}=\frac{8x^4-8x^2+1}{2}\)

\(\Leftrightarrow2x\sqrt{1-x^2}=8x^4-8x^2+1\)

\(\Leftrightarrow4x^2\left(1-x^2\right)=64x^8-128x^6+80x^4-16x^2+1\)

\(\Leftrightarrow-\left(2x^2-1\right)^2\left(16x^4-16x^2+1\right)=0\)

Suy ra \(2x^2-1=0\)  hoặc \(16x^4-16x^2+1=0\)

Suy ra \(x=-\frac{1}{\sqrt{2}}\) hoặc \(16\left(x^2-\frac{1}{2}\right)^2-3=0\Rightarrow x=\frac{\sqrt{12}-2}{\sqrt{32}}\) (thỏa)

18 tháng 8 2017

ĐK:\(-1\le x\le1\)

\(\sqrt{\frac{1+2x\sqrt{1-x^2}}{2}}=1-2x^2\)

\(\Leftrightarrow\frac{1+2x\sqrt{1-x^2}}{2}=4x^4-4x^2+1\)

\(\Leftrightarrow\frac{2x\sqrt{1-x^2}}{2}=\frac{8x^4-8x^2+1}{2}\)

\(\Leftrightarrow2x\sqrt{1-x^2}=8x^4-8x^2+1\)

\(\Leftrightarrow4x^2\left(1-x^2\right)=64x^8-128x^6+80x^4-16x^2+1\)

\(\Leftrightarrow-\left(2x^2-1\right)^2\left(16x^4-16x^2+1\right)=0\)

Suy ra \(2x^2-1=0\)  hoặc \(16x^4-16x^2+1=0\)

Suy ra \(x=-\frac{1}{\sqrt{2}}\) hoặc \(16\left(x^2-\frac{1}{2}\right)^2-3=0\Rightarrow x=\frac{\sqrt{12}-2}{\sqrt{32}}\) (thỏa)

6 tháng 8 2015

\(\sqrt{x^2-10x+25}=7-2x=>\sqrt{\left(x-5\right)^2}=7-2x=>!x-5!=7-2x\)

\(x-5=7-2x\left(x>=5\right)=>3x=7+5=>x=4\)

\(5-x=7-2x\left(x<5\right)=>2x-x=7-5=>x=2\)

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

2 tháng 8 2019

ĐK \(x\ge-\frac{1}{2}\)

Đặt như trên... (\(a\ge\sqrt{\frac{1}{2}};b\ge0\)) ta có hệ:

\(\hept{\begin{cases}2a^2b=a+b^3\\2a^2-b^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(b^2+1\right)b=a+b^3\\2a^2=b^2+1\end{cases}}\)

Xét pt trình đầu của hệ \(\Leftrightarrow a=b\). Thay b bởi a ở pt dưới ta được:

\(2a^2-a^2-1=0\Leftrightarrow\orbr{\begin{cases}a=1\left(TM\right)\\a=-\frac{1}{2}\left(KTM\right)\end{cases}}\). Với a = 1 thì ta có:

\(\sqrt{1+x}=1\Leftrightarrow x=0\) (TM)

Vậy...