Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Đặt \(\sqrt[3]{x}=a\). Khi đó pt trở thành:
\(a^2-3a=20\)
\(\Leftrightarrow a^2-3a+\left(\frac{3}{2}\right)^2=\frac{89}{4}\)
\(\Leftrightarrow (a-\frac{3}{2})^2=\frac{89}{4}\)
\(\Rightarrow \left[\begin{matrix} a-\frac{3}{2}=\frac{\sqrt{89}}{2}\\ a-\frac{3}{2}=\frac{-\sqrt{89}}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} a=\frac{3}{2}+\frac{\sqrt{89}}{2}\\ a=\frac{3}{2}-\frac{\sqrt{89}}{2}\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=a^3=\left(\frac{3+\sqrt{89}}{2}\right)^3\\ x=a^3=\left(\frac{3-\sqrt{89}}{2}\right)^3\end{matrix}\right.\)
b)
Đặt \(\left\{\begin{matrix} \sqrt{x^2+1}=a\\ 2x-1=b\end{matrix}\right.(a>0)\)
Khi đó, pt trở thành:
\(a(2b+1)=2a^2+b\)
\(\Leftrightarrow (2a^2-2ab)-(a-b)=0\)
\(\Leftrightarrow 2a(a-b)-(a-b)=0\)
\(\Leftrightarrow (2a-1)(a-b)=0\)
Từ đây xét các TH:
TH1: \(2a-1=0\Leftrightarrow a=\frac{1}{2}\Leftrightarrow \sqrt{x^2+1}=\frac{1}{2}\)
\(\Leftrightarrow x^2=\frac{1}{4}-1=\frac{-3}{4}< 0\) (vô lý)
TH2: \(a-b=0\Leftrightarrow \sqrt{x^2+1}=2x-1\)
\(\Rightarrow \left\{\begin{matrix} x^2+1=(2x-1)^2\\ 2x-1\geq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 3x^2-4x=0\\ x\geq \frac{1}{2}\end{matrix}\right.\Rightarrow x=\frac{4}{3}\)
Vậy.......
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
bài 1:
a:\(\sqrt{\left(\sqrt{3}-2\right)^2}\)+\(\sqrt{\left(1+\sqrt{3}\right)^2}\)
=\(\sqrt{3}-2+1+\sqrt{3}\)
=\(2\sqrt{3}-1\)
b; dài quá mink lười làm thông cảm
bài 2:
\(\sqrt{x^2-2x+1}=7\)
=>\(\sqrt{\left(x-1\right)^2}=7
\)
=>\(\orbr{\begin{cases}x-1=7\\x-1=-7\end{cases}}\)
=>\(\orbr{\begin{cases}x=8\\x=-6\end{cases}}\)
b: \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
=>\(\sqrt{4\left(x-5\right)}-9\sqrt{x-5}=\sqrt{1-x}\)
\(=2\sqrt{x-5}-9\sqrt{x-5}=\sqrt{1-x}\)
=>\(-7\sqrt{x-5}=\sqrt{1-x}\)
=\(-7.\left(x-5\right)=1-x\)
=>\(-7x+35=1-x\)
=>\(-7x+x=1-35\)
=>\(-6x=-34\)
=>\(x\approx5.667\)
mink sợ câu b bài 2 sai đó bạn
1 a)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
= \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
= \(|2-\sqrt{3}|+|1+\sqrt{3}|\)
= \(2-\sqrt{3}+1+\sqrt{3}\)
= \(2+1\)= \(3\)
b) \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)\cdot\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{6}{3^2}}-4\sqrt{\frac{6}{2^2}}\right)\cdot\left(3\sqrt{\frac{6}{3^2}}-\sqrt{6}\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-\frac{4}{2}\sqrt{6}\right)\cdot\left(\frac{3}{3}\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}\right)\cdot\left(\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-2\right)\right)\cdot\left(\sqrt{6}\left(1-\sqrt{2}-1\right)\right)\)
= \(\sqrt{6}\frac{1}{6}\cdot\sqrt{6}\left(-\sqrt{2}\right)\)
= \(\sqrt{6}^2\left(\frac{-\sqrt{2}}{6}\right)\)
= \(6\frac{-\sqrt{2}}{6}\)=\(-\sqrt{2}\)
2 a) \(\sqrt{x^2-2x+1}=7\)
<=> \(\sqrt{x^2-2x\cdot1+1^2}=7\)
<=> \(\sqrt{\left(x-1\right)^2}=7\)
<=> \(|x-1|=7\)
Nếu \(x-1>=0\)=>\(x>=1\)
=> \(|x-1|=x-1\)
\(x-1=7\)<=>\(x=8\)(thỏa)
Nếu \(x-1< 0\)=>\(x< 1\)
=> \(|x-1|=-\left(x-1\right)=1-x\)
\(1-x=7\)<=>\(-x=6\)<=> \(x=-6\)(thỏa)
Vậy x=8 hoặc x=-6
b) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
<=> \(\sqrt{4\left(x-5\right)}-3\frac{\sqrt{x-5}}{3}=\sqrt{1-x}\)
<=> \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)
<=> \(\sqrt{x-5}=\sqrt{1-x}\)
ĐK \(x-5>=0\)<=> \(x=5\)
\(1-x\)<=> \(-x=-1\)<=> \(x=1\)
Ta có \(\sqrt{x-5}=\sqrt{1-x}\)
<=> \(\left(\sqrt{x-5}\right)^2=\left(\sqrt{1-x}\right)^2\)
<=> \(x-5=1-x\)
<=> \(x-x=1+5\)
<=> \(0x=6\)(vô nghiệm)
Vậy phương trình vô nghiệm
Kết bạn với mình nha :)
b) Cách làm cũng giống như thế :v
ĐKXĐ: \(x\ge\frac{1}{2}\)
\(PT\Leftrightarrow\left(x-1\right)\left(\frac{4x+6}{\sqrt{2x-1}+1}+\frac{x}{\sqrt{x+3}+2}+x\right)=0\)
\(\Leftrightarrow x=1\) (TMĐK)
a) ĐKXĐ: \(x\ge1\).
\(PT\Leftrightarrow x\left(\sqrt{x-1}-1\right)+\left(2x+1\right)\left(\sqrt{x+2}-2\right)+\left(x^3-4x^2+6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{x}{\sqrt{x-1}+1}+\frac{2x+1}{\sqrt{x+2}+2}+x^2-2x+2\right)=0\)
\(\Leftrightarrow x=2\left(TMĐK\right)\)
\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))
Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4
Vậy nghiệm duy nhất của phương trình là 4
f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)
\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)
\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)
\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )
a)DK:x>0.
->\(\sqrt[3]{x^2}\) =20+\(\sqrt[3]{x}\) \(\ge\)20
->DK:\(\sqrt[3]{x}\)\(\ge\) \(\sqrt{20}\) >\(\frac{3}{2}\).
Đặt :\(\sqrt[3]{x}\) =a (a\(\ge\)\(\sqrt{20}\)>\(\frac{3}{2}\) ).
Khi đó ta có phương trình sau:
a2-3a=20.
Giải ra ta có:(a-\(\frac{3}{2}\))2=\(\frac{89}{4}\) mà a>\(\frac{3}{2}\) nên a-\(\frac{3}{2}\) >0.
hay a-\(\frac{3}{2}\) =\(\frac{\sqrt{89}}{2}\).
->a=\(\frac{\sqrt{89}+3}{2}\) (tm).
hay x=(\(\frac{\sqrt{89}+3}{2}\))3 (tm).
Vậy...
b)DK:x\(\varepsilon\) R.
Đặt:\(\sqrt{x^2+1}\)=a (a\(\ge\)1) ; 2x-1=b.->4x-1=2b+1.
Khi đó ta có được phương trình sau:
a.(2b+1)=2a2+b.
<->2ab+a=2a2+b.
<->2a2-2ab-a+b=0.
<->2a(a-b)-(a-b)=0
<->(2a-1).(a-b)=0 mà a\(\ge\)1->2a-1>0.
<->a=b
->a2=b2 hay x2+1=(2x-1)2
Giải ra ta có:3x2-4x=0.
hay x.(3x-4)=0.
<->\(\orbr{\begin{cases}x=0\left(tm\right)\\x=\frac{4}{3}\left(tm\right)\end{cases}}\)
Vậy...
c)DK:x\(\ge\) 2.
->\(\sqrt{\left(x+1\right).\left(x-2\right)}\) -2\(\sqrt{x-2}\)=\(\sqrt{x-1}\)
->DK:x>3.
tối rồi buồn ngủ không giải nữa.