Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
\(a,-x^3+x^2+4=0\)
\(-\left(x^3-x^2-4\right)=0\)
\(x^3-2x^2+x^2+2x-2x-4=0\)
\(x^2\left(x-2\right)+x\left(x+2\right)-2\left(x+2\right)=0\)
\(x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)=0\)
\(\left(x-2\right)\left(x^2+x+2\right)=0\)
Vì \(x^2+x+2>0\left(\forall x\right)\)
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
\(2x^2+2xy+y^2=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2=0\)
\(\Leftrightarrow\left(x+y\right)^2+x^2=0\)
\(\Leftrightarrow x=y=0\)
a.
\(=\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
b.
\(=\left(x+1\right)\left(x+1\right)\left(x^2+x+1\right)\)
c.
a, ( 8x + 5 )( 4x + 3 )( 2x + 1 ) = 9
<=> ( 8x + 5 )[ 2( 4x+3)] [ 4 ( 2x+1 )] = 9* 2 * 4
<=> (8x+5)(8x+6)(8x+4) = 72
Đặt 8x+5 = y ta có phương trình tương đương :
y ( y -1 ) ( y+1) = 72
......................
b, Tương tự phần a nhé
c, x^3 + 5x^2 + 5x + 2=0
<=> x^3 + 1 + 5x^2 + 5x + 1 = 0
<=> (x+1)(x^2 - x +1) + 5x ( x+1 ) + 1 =0
<=> (x+1 ) ( x^2+4x + 1) + 1 = 0
a) (5x - 1)(2x + 1) = (5x -1)(x + 3)
<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0
<=> (5x - 1)(2x + 1 - x - 3) = 0
<=> (5x - 1)(x - 2) = 0
<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)
Vậy x = 0,2 ; x = 2 là nghiệm phương trình
b) x3 - 5x2 - 3x + 15 = 0
<=> x2(x - 5) - 3(x - 5) = 0
<=> (x2 - 3)(x - 5) = 0
<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)
<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)
<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)
Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm
c) (x - 3)2 - (5 - 2x)2 = 0
<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0
<=> (-x + 2)(3x - 8) = 0
<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)
d) x3 + 4x2 + 4x = 0
<=> x(x2 + 4x + 4) = 0
<=> x(x + 2)2 = 0
<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)
\(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
\( < =>2\left[x\left(x^2+4x+4\right)-\left(2x\right)^2\right]=2\left(x^3-8\right)\)
\(< =>x^3+4x^2+4x-4x^2=x^3-8\)
\(< =>4x=-8< =>x=-2\)
Bài làm:
Ta có: \(B=2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
\(\Leftrightarrow2x^3+8x^2+8x-8x^2=2x^3-16\)
\(\Leftrightarrow8x+16=0\)
\(\Leftrightarrow8x=-16\)
\(\Rightarrow x=-2\)
\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }
Ta có: \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\)\(\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)\(\forall x\)
\(\Rightarrow x^2+2x+2\ge1\)\(\forall x\)
\(\Rightarrow\left(8x-4\right)\left(x^2+2x+2\right)=0\)\(\Leftrightarrow8x-4=0\)
\(\Leftrightarrow8x=4\)\(\Leftrightarrow x=\frac{1}{2}\)
Vậy nghiệm của phương trình là \(S=\left\{\frac{1}{2}\right\}\)
\(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
TH1 : \(8x-4=0\Leftrightarrow x=\frac{1}{2}\)
TH2 : \(x^2+2x+2=0\Leftrightarrow\left(x+1\right)^2+1>0\)
Vậy tập nghiệm phương trình là S = { 1/2 }