\(2\left(a^2+1\right)\left(b^2+1\right)=\left(a+1\right)\left(b+1\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

Ta có  \(2\left(a^2+1\right)\ge\left(a+1\right)^2\)

           \(2\left(b^2+1\right)\ge\left(b+1\right)^2\)

          \(\left(a^2+1\right)\left(b^2+1\right)=a^2b^2+a^2+b^2+1\)

                                                \(=\left(ab+1\right)^2+\left(a-b\right)^2\)

                                                 \(\ge\left(ab+1\right)^2\)

\(\Rightarrow4\left(a^2+1\right)^2\left(b^2+1\right)^2\ge\left(a+1\right)^2\left(b+1\right)^2\left(ab+1\right)^2\)

\(\Rightarrow2\left(a^2+1\right)\left(b^2+1\right)\ge\left(a+1\right)\left(b+1\right)\left(ab+1\right)\)

để \(2\left(a^2+1\right)\left(b^2+1\right)\ge\left(a+1\right)\left(b+1\right)\left(ab+1\right)\)

\(\Rightarrow a=1;b=1\)

15 tháng 12 2017

đoạn thứ ba không dùng bunhia cho nhanh

24 tháng 4 2019

a) Ta có : \(\left(4x+2\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=-2\\x^2=-1\left(loai\right)\end{cases}\Leftrightarrow}x=-2}\)

24 tháng 4 2019

\(\left(3x+2\right).\left(x^2-1\right)=\left[\left(3x\right)^2-2^2\right].\left(x+1\right)\)

\(\Rightarrow\left(3x+2\right).\left(x-1\right).\left(x+1\right)-\left(3x-2\right).\left(3x+2\right).\left(x+1\right)=0\)

\(\Rightarrow\left(3x+2\right).\left(x+1\right).\left[x-1-3x+2\right]=0\)

\(\Rightarrow\left(3x+2\right).\left(x+1\right).\left(-2x+1\right)=0\)

đến đây dễ rồi :)) 

22 tháng 4 2017

Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

21 tháng 3 2021

a)(2x+1)(3x-2)=(5x-8)(2x+1)

⇔(2x+1)(3x-2)-(5x-8)(2x+1)=0

⇔(2x+1)(3x-2-5x+8)=0

⇔(2x+1)(-2x+6)=0

⇔2x+1=0 hoặc -2x+6=0

1.2x+1=0⇔2x=-1⇔x=-1/2

2.-2x+6=0⇔-2x=-6⇔x=3

phương trình có 2 nghiệm x=-1/2 và x=3

4 tháng 10 2018

\(\frac{(b-c)(1+a)^2}{x+a^2}+\frac{(c-a)(1+b)^2}{x+b^2}+\frac{(a-b) (1+c)^2}{x+c^2}=0\)

\(\Leftrightarrow \sum (b-c)(1+a)^2(x+b^2)(x+c^2)=0\)

\(\Leftrightarrow (a-b)(b-c)(c-a)(x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca)=0\)

\(\Leftrightarrow x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca=0\)

Xét phương trình  \(x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca=0\)

Ta thấy \(\Delta=(2a+2b+2c+ab+bc+ca-1)^2+8(a+b+c-abc)\)

Nếu \(\Delta <0\) thì phương trình vô nghiệm

Nếu \(\Delta =0\) thì phương trình có nghiệm kép

Nếu \(\Delta >0\) thì phương trình có hai nghiệm 

24 tháng 1 2018

tôi chịu

24 tháng 1 2018

b)  Đặt  \(x-7=a\) ta có:

         \(\left(a+1\right)^4+\left(a-1\right)^4=16\)

 \(\Leftrightarrow\)\(a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1=16\)

 \(\Leftrightarrow\)\(2a^4+12a^2+2-16=0\)

 \(\Leftrightarrow\)\(2\left(a^4+6a^2-7\right)=0\)

 \(\Leftrightarrow\)\(a^4+6a^2-7=0\)

 \(\Leftrightarrow\)\(\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)

Vì     \(a^2+7>0\) nên    \(\orbr{\begin{cases}a-1=0\\a+1=0\end{cases}}\)

Thay trở lại ta có:   \(\orbr{\begin{cases}x-8=0\\x-6=0\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Vậy...

16 tháng 2 2019

a) \(\left(x-3\right)^2-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)-\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow x^2-6x+9-x^2-2x-1=0\)

\(\Leftrightarrow-8x+8=0\Leftrightarrow-8\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy phương trình có tập nghiệm S = {1}

b) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)-\left(x^2-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)

<=> x - 2 = 0 hoặc x + 2 = 0 hoặc x + 4 = 0

<=> x = 2 hoặc x = -2 hoặc x = -4

Vậy phương trình có tập nghiệm S = {  2; -2; -4 }

c) \(\left(3x-7\right)^2-4\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(9x^2-42x+49\right)-4\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow9x^2-42x+49-4x^2-8x-4=0\)

\(\Leftrightarrow5x^2-50x+45=0\Leftrightarrow5\left(x-1\right)\left(x-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=9\end{cases}}\)

Vậy phương trình có tập nghiệm S = { 1; 9 }

26 tháng 1 2019

a) x(x+1)(x^2+x+1)=42

=> (x^2+x)(x^2+x+1)=42 (1)

Đặt x^2+x=t

=> x^2+x+1=t+1

=> pt (1) có dạng: t(t+1)=42

=> t^2+t=42

=> 4t^2+4t=168

=> 4t^2+4t+1=169

=> (2t+1)^2=(+-13)^2

Xong tìm t và tự tìm nốt x

b) x(x+1)(x+2)(x+3)=24

=> x(x+3)(x+1)(x+2)=24

=> (x^2+3x)(x^2+3x+2)=24

Đặt x^2+3x+1=t

=> x^2+3x=t-1 và x^2+3x+2=t+1

Xong thay vào tìm t và tự tìm x.

26 tháng 1 2019

a, \(x\left(x+1\right)\left(x^2+x+1\right)=42\)

\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)

Đặt x^2+x=a

=>\(a^2+a=42\)

\(a^2+a-42=0\)

\(a^2+7a-6a-42=0\)

\(\left(a+7\right)\left(a-6\right)=0\)

\(\left(x^2+x+7\right)\left(x^2+x-6\right)=0\)

\(\left(x^2+x+7\right)\left(x-2\right)\left(x+3\right)=0\)

x^2+x+7>0

=>(x-2)(x-3)=0

=>x=2,3

b,x(x+1)(x+2)(x+3)=24

[x(x+3)][(x+1)(x+2)]=24

(x^2+3x)(x^2+3x+2)=24

Đặt x^2+3x=a

=>a(a+2)-24=0

=>a^2+2a-24=0

=>a^2+6a-4a-24=0

=>(a-4)(a+6)=0

=>(x^2+3x-4)(x^2+3x+6)=0

=>(x-1)(x+4)(x^2+3x+6)=0

vì (x^2+3x+6)>0

=>(x-1)(x+4)=0