Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(3x^2+4x-3=4x\sqrt{4x-3}\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{4x-3}+4x-3\right)-x^2=0\)
\(\Leftrightarrow\left(2x-\sqrt{4x-3}\right)^2-x^2=0\)
\(\Leftrightarrow\left(3x-\sqrt{4x-3}\right)\left(x-\sqrt{4x-3}\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}3x=\sqrt{4x-3}\\x=\sqrt{4x-3}\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}9x^2-4x+3=0\\x^2-4x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=1\\x=3\end{matrix}\right.\)
3.\(pt\Leftrightarrow\sqrt{3x+8}-\sqrt{3x+5}=\sqrt{5x-4}-\sqrt{5x-7}\)
\(\Leftrightarrow\frac{3x+8-5x+4}{\sqrt{3x+8}+\sqrt{5x+4}}-\frac{3x+5-5x+7}{\sqrt{3x+5}+\sqrt{5x+7}}=0\)
\(\Leftrightarrow\left(12-2x\right)\left(\frac{1}{\sqrt{3x+8}+\sqrt{5x+4}}+\frac{1}{\sqrt{3x+5}+\sqrt{5x+7}}\right)=0\)
\(\Rightarrow x=6\)
a)
Pt\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=\left(x-3\right)^2\\x-3\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-4=x^2-6x+9\\x\ge3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9x+13=0\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{9+\sqrt{29}}{2}\\x_2=\dfrac{9-\sqrt{29}}{2}\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{9+\sqrt{29}}{2}\)
Vậy \(x=\dfrac{9+\sqrt{29}}{2}\) là nghiệm của phương trình.
b) Pt \(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+3=\left(2x-1\right)^2\\2x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x^2-2x-2=0\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{7}}{3}\\x_2=\dfrac{1-\sqrt{7}}{3}\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{1+\sqrt{7}}{3}\)
Vậy phương trình có duy nhất nghiệm là: \(x=\dfrac{1+\sqrt{7}}{3}\)
a/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow x^2-2x+1-\left(x-\sqrt{2x-1}\right)=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(1-\frac{1}{x+\sqrt{2x-1}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x+\sqrt{2x-1}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{2x-1}=1-x\) (\(x\le1\))
\(\Leftrightarrow2x-1=x^2-2x+1\)
\(\Leftrightarrow x^2-4x+2=0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{2}\left(l\right)\\x=2-\sqrt{2}\end{matrix}\right.\)
b/ Nhìn cái mẫu đã nản rồi, bỏ qua :(
c/ ĐKXĐ: \(x\ge\frac{2}{3}\)
\(\sqrt{3x-2}-1+\sqrt[3]{x}-1=0\)
\(\Leftrightarrow\frac{3\left(x-1\right)}{\sqrt{3x-2}+1}+\frac{x-1}{\sqrt[3]{x^2}+\sqrt[3]{x}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{3}{\sqrt{3x-2}+1}+\frac{1}{\sqrt[3]{x^2}+\sqrt[3]{x}+1}\right)=0\)
\(\Rightarrow x=1\)
c/ \(\Leftrightarrow3\sqrt[3]{x}-3+\sqrt{x^2+8}-3=\sqrt{x^2+15}-4\)
\(\Leftrightarrow\frac{3\left(x-1\right)}{\sqrt[3]{x^2}+\sqrt[3]{x}+1}+\frac{x^2-1}{\sqrt{x^2+8}+3}=\frac{x^2-1}{\sqrt{x^2+15}+4}\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{3}{\sqrt[3]{x^2}+\sqrt[3]{x}+1}+\frac{x+1}{\sqrt{x^2+8}+3}-\frac{x+1}{\sqrt{x^2+15}+4}\right)=0\)
\(\Leftrightarrow x=1\)
Cái ngoặc to kia luôn dương, nhưng chứng minh chắc hơi mệt
a) \(\sqrt{5x+3}=3x-7\)\(\Leftrightarrow\left\{{}\begin{matrix}5x+3=\left(3x-7\right)^2\\3x-7\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x+3=9x^2-42x+49\\x\ge\dfrac{7}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}9x^2-47x+46=0\\x\ge\dfrac{7}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{47+\sqrt{553}}{18}\\x=\dfrac{47-\sqrt{553}}{18}\end{matrix}\right.\\x\ge\dfrac{7}{3}\end{matrix}\right.\)\(\Leftrightarrow\dfrac{47+\sqrt{553}}{18}\).
b) \(\sqrt{3x^2-2x-1}=3x+1\)\(\Leftrightarrow\left\{{}\begin{matrix}3x^2-2x-1=\left(3x+1\right)^2\\3x+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x^2+8x+2=0\\x\ge\dfrac{-1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-1\end{matrix}\right.\\x\ge-\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow x=-\dfrac{1}{3}\).
đa phần mình sử dụng phương pháp liên hợp nha bạn
\(\sqrt{a}-\sqrt{b}=\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)
b. điều kiện \(\dfrac{1}{4}\le x\le\dfrac{3}{8}\), pt:
\(\Leftrightarrow\sqrt{3-8x}-\sqrt{4x-1}=6x-2\\ \Leftrightarrow\dfrac{3-8x-4x+1}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow\dfrac{-4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow2\left(3x-1\right)+\dfrac{4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=0\\ \Leftrightarrow2\left(3x-1\right)\left(1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(n\right)\\1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}=0\left(vn\right)\end{matrix}\right.\)
d. điều kiện: \(x\le-4\cup x\ge0\), pt:
\(\Leftrightarrow1-\sqrt{x^2-3x+3}=\sqrt{2x^2+x+2}-\sqrt{x^2+4x}\\ \Leftrightarrow\dfrac{1-x^2+3x-3}{1+\sqrt{x^2-3x+3}}=\dfrac{2x^2+x+2-x^2-4x}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\\ \Leftrightarrow\dfrac{-\left(x-1\right)\left(x-2\right)}{1+\sqrt{x^2-3x+3}}=\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=1\left(n\right)\\\dfrac{-1}{1+\sqrt{x^2-3x+3}}=\dfrac{1}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\left(vn\right)\end{matrix}\right.\)
e. điều kiện:x thuộc R
\(\Leftrightarrow\sqrt{x^2+15}-4=3x-3+\sqrt{x^2+8}-3\\ \Leftrightarrow\dfrac{x^2+15-16}{\sqrt{x^2+15}+4}=3\left(x-1\right)+\dfrac{x^2+8-9}{\sqrt{x^2+8}+3}\\ \Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+15}+4}-3\left(x-1\right)-\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\dfrac{\left(x+1\right)}{\sqrt{x^2+15}+4}-3-\dfrac{\left(x+1\right)}{\sqrt{x^2+8}+3}=0\left(1\right)\end{matrix}\right.\)
(1) mình không biết có vô nghiệm không nữa và cũng thua luôn
f. điều kiện: \(x\ge-2\)
bài này giải cách hơi khác một chút
đặt \(a=\sqrt{x+5}\left(\ge0\right)\\ b=\sqrt{x+2}\left(\ge0\right)\)
pt:
\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left[\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)\right]\\ \Rightarrow\left(a-b\right)\left(1+ab\right)=3\left(1\right)\)
mà \(a^2-b^2=x+5-x-2=3\\ \Rightarrow\left(a-b\right)\left(a+b\right)=3\left(2\right)\)
=> (1) = (2)
\(\Leftrightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\\ \Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
TH1: a=b \(\Leftrightarrow\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow x+5=x+2\left(vn\right)\)
TH2: a=1\(\Leftrightarrow\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)
TH3: b=1\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\left(n\right)\)
g. điều kiện: \(x\le-\sqrt{2}\cup x\ge\dfrac{7+\sqrt{37}}{2}\)
pt:
\(\dfrac{3x^2-7x+3-3x^2+5x+1}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\\ \Leftrightarrow\dfrac{-2\left(x-2\right)}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3\left(x-2\right)}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(n\right)\\\dfrac{-2}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\left(vn\right)\end{matrix}\right.\)h. điều kiện \(x\le-2-\sqrt{7}\cup x\ge-2+\sqrt{7}\)
\(\sqrt{2x^2+x-1}-\sqrt{x^2+4x-3}=\sqrt{2x^2+4x-3}-\sqrt{3x^2+x-1}\\ \Leftrightarrow\dfrac{2x^2+x-1-x^2-4x+3}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{2x^2+4x-3-3x^2-x+1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\\ \Leftrightarrow\dfrac{x^2-3x+2}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-\left(x^2-3x+2\right)}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\Leftrightarrow x=1\left(n\right),x=2\left(n\right)\\\dfrac{1}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\left(vn\right)\end{matrix}\right.\)
(nhớ tích cho mình nha, mấy bài kia mình ko biết làm huhu)
a/ ĐKXĐ: ...
\(\Leftrightarrow4x^2-4x+1-\left(2x-\sqrt{4x-1}\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2-\frac{\left(2x-1\right)^2}{2x+\sqrt{4x-1}}=0\)
\(\Leftrightarrow\left(2x-1\right)^2\left(1-\frac{1}{2x+\sqrt{4x-1}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\2x+\sqrt{4x-1}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{4x-1}=1-2x\) (\(x\le\frac{1}{2}\))
\(\Leftrightarrow4x-1=\left(1-2x\right)^2\)
\(\Leftrightarrow4x-1=4x^2-4x+1\)
\(\Leftrightarrow2x^2-4x+1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{2+\sqrt{2}}{2}\left(l\right)\\x=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)
b/
Đặt \(3x^2-2x+2=a>0\) ta được:
\(\sqrt{a+7}+\sqrt{a}=7\)
\(\Leftrightarrow2a+7+2\sqrt{a^2+7a}=49\)
\(\Leftrightarrow\sqrt{a^2+7a}=21-a\) (\(a\le21\))
\(\Leftrightarrow a^2+7a=\left(21-a\right)^2\)
\(\Leftrightarrow a^2+7a=a^2-42a+441\)
\(\Rightarrow a=9\Rightarrow3x^2-2x+2=9\)
\(\Leftrightarrow3x^2-2x-7=0\Rightarrow x=\frac{1\pm\sqrt{22}}{3}\)