Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề <=> \(\left(x^2+2x\right)\left(x^2+2x-8\right)\)\(=-7\) (1)
đặt x2+2x-4=a
từ (1) => (a-4)(a+4)= -7
<=> a2-16=-7
<=> a2-9=0
<=>(a-3)(a+3)=0
=> a=3 hoặc a=-3
thay số vào làm nốt nhé
a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0
=> hoặc (3x2 - 7x – 10) = 0 (1)
hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)
Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0
nên
x1 = - 1, x2 = =
Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0
nên
x3 = 1, x4 =
b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0
=> hoặc x + 3 = 0
hoặc x2 - 2 = 0
Giải ra x1 = -3, x2 = -√2, x3 = √2
c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0
=> hoặc 0,6x + 1 = 0 (1)
hoặc x2 – x – 1 = 0 (2)
(1) ⇔ 0,6x + 1 = 0
⇔ x2 = =
(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5
x3 = , x4 =
Vậy phương trình có ba nghiệm:
x1 = , x2 = , x3 = ,
d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0
⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0
⇔ (2x2 + x)(3x – 10) = 0
⇔ x(2x + 1)(3x – 10) = 0
Hoặc x = 0, x = , x =
Vậy phương trình có 3 nghiệm:
x1 = 0, x2 = , x3 =
\(9.\left(x+5\right).\left(x+6\right).\left(x+7\right)=24.x\)
\(\Leftrightarrow\left(9.x+45\right).\left(x+6\right).\left(x+7\right)=24.x\)
\(\Leftrightarrow\left(9.x^2+54.x+45.x+270\right).\left(x+7\right)=24.x\)
\(\Leftrightarrow\left(9.x^2+99.x+270\right).\left(x+7\right)=24.x\)
\(\Leftrightarrow9.x^3+63.x^2+99.x^2+693.x+270.x+1890=24.x\)
\(\Leftrightarrow9.x^3+162.x^2+963.x+1890=24.x\)
\(\Leftrightarrow9.x^3+162.x^2+963.x+1890-24.x=0\)
\(\Leftrightarrow9.x^3+162.x^2+939.x+1890=0\)
\(\Leftrightarrow3.\left(3.x^3+54.x^2+313+630\right)=0\)
\(\Leftrightarrow3.\left(3.x^3+27.x^2+27.x^2+243.x+70.x+630\right)=0\)
\(\Leftrightarrow3.\left(3.x^2.\left(x+9\right)+27.x.\left(x+9\right)+70.\left(x+9\right)\right)=0\)
\(\Leftrightarrow3.\left(x+9\right).\left(3.x^2+27.x+70\right)=0\)
\(\Leftrightarrow\left(x+9\right).\left(3.x^2+27.x+70\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\3.x^2+27.x+70=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-9\\x\notinℝ\end{cases}}\)
Vậy x = -9
\(9\left(x+5\right)\left(x+6\right)\left(x+7\right)=24x\)
\(\Leftrightarrow3\left(x+5\right)\left(x+6\right)\left(x+7\right)=8x\)
\(\Leftrightarrow3x^3+54x^2+321x+630=8x\)
\(\Leftrightarrow3x^3+54x^2+313x+630=0\)
\(\Leftrightarrow\left(x+9\right)\left(3x^2+27x+70\right)=0\)
\(\Leftrightarrow x+9=0\)
\(\Leftrightarrow x=9\)
Mà: \(3x^2+27x+70=3\left(x+\frac{9}{2}\right)^2+\frac{37}{4}>0\)
Vậy ..............
\(\left(x-7\right)\left(x-2\right)=x^2-9x+14\)
\(\left(x-5\right)\left(x-4\right)=x^2-9x+20\)
Đặt x^2-9x+14=y
\(y\left(y+6\right)=72\Leftrightarrow y^2+6y-72=0\)
\(\Delta'_y=3^2+72=81\)
\(\left\{\begin{matrix}y_1=-3+9=6\\y_2=-3-9=-12\end{matrix}\right.\)
\(x^2-9x+26=>\left(vonghiem\right)\)
\(x^2-9x+8=0\)
(a+b+c=0)
x1=1
x2=8
Kết luận:
pt đã chó có hai N0 x1=1 và x2=8
pt đã chó