\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

a. ĐKXĐ :\(x\ge2\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\text{ }\left(\text{TM}\right)\\\text{vô nghiệm}\end{matrix}\right.\)

b. \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\) \(\left(1\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2ac+2bd\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\) \(\left(2\right)\)

\(+\) Nếu \(ac+bd< 0\) thì \(\left(2\right)\) được chứng minh

\(+\) Nếu \(ac+bd\ge0\), ta có :

\(\left(2\right)\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2abcd\)

\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) \(\left(3\right)\)

Bất đẳng thức \(\left(3\right)\) đúng \(\forall a,d,b,c\in R\)

Vậy bất đẳng thức một được chứng minh

21 tháng 8 2017

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B

8 tháng 1 2018

giải bài nào hộ mk cx được ko cần lm hết đâu :) :) :)

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

26 tháng 7 2019

\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)

\(\Leftrightarrow\sqrt{x-2}-1+\sqrt{4-x}-1=2x^2-5x-3\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x-2}+1}+\frac{1}{\sqrt{4-x}+1}+2x+1\right)=0\)

\(\Rightarrow x=3\)

phương trình còn lại mk chưa giải đc nhưng nó vô nghiệm

26 tháng 7 2019

Em thử câu c nha, sai thì thôi

c) ĐK: \(x\ge-1\).Nhận xét x = 0 là không phải nghiệm, xét x khác 0:

Nhân liên hợp ta được \(\left(x+4\right).\left(\frac{x}{\sqrt{x+1}-1}\right)^2=x^2\)

\(\Leftrightarrow\frac{x+4}{\left(\sqrt{x+1}-1\right)^2}=1\Leftrightarrow x+4=\left(\sqrt{x+1}-1\right)^2\)

\(\Leftrightarrow x+4=x+2-2\sqrt{x+1}\) (rút gọn vế phải)

\(\Leftrightarrow\sqrt{x+1}=-1\left(\text{vô lí}\right)\)

Vậy pt vô nghiệm

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)