\(x\sqrt{2x^2+5x+3}=4x^2-5x-3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2020

Gợi ý

ĐKXĐ: ....

Do x=0 không phải là nghiệm nên chia cả hai vế cho x^2 có

\(\sqrt{2+\frac{5}{x}+\frac{3}{x^2}}=4-\frac{5}{x}-\frac{3}{x^2}\)(1) Đặt \(\sqrt{\frac{5}{x}+\frac{3}{x^2}+2}=y\Rightarrow y\ge0\)và \(\frac{5}{x}+\frac{3}{x^2}=y^2-2\)

Khi đó \(\left(1\right)\Leftrightarrow y=4-y^2+2\)Sau khi tìm được y thì thế vào tìm x ,  rồi đối chiếu ĐKXĐ và trả lời

   KL : ...

14 tháng 10 2019

\(\sqrt{2x+5}+3-1-\sqrt{3-x}=\left(x-2\right)\left(x-3\right)\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x+5}-3}-\frac{2-x}{1-\sqrt{3-x}}-\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x+5}-3}+\frac{1}{1-\sqrt{3-x}}-x+3\right)=0\)

Giải nốt vs ạ

NV
11 tháng 12 2018

Ta có

\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)

\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)

Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)

\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

17 tháng 7 2017

\(\sqrt{5x-3}=3-x\)

\(\Leftrightarrow\sqrt{5x-3}^2=\left(3-x\right)^2\)

\(\Leftrightarrow\left|5x-3\right|=9+x^2-6x\)

\(\orbr{\begin{cases}5x-3=9+x^2-6x\\-5x-3=9+x^2-6x\end{cases}}\)

Tự giải từng PT

21 tháng 1 2020

\(a,\sqrt{5x^2+10x+1}=7-\left(x^2+2x\right)\)

Đặt: \(\sqrt{5x^2+10x+1}=t\ge0\) ta được:

\(t=7-\frac{t^2-1}{5}\)

\(\Rightarrow t^2+5t-36=0\)

\(\Rightarrow t=4\)

\(\Rightarrow\hept{\begin{cases}x_1=-3\\x_2=1\end{cases}}\)

Vậy .................

16 tháng 7 2017

 câu a và câu b bình phương là ra 
câu c vì  mỗi dấu căn luôn luôn lớn hơn hoặc bằng 0 nên từng cái căn 1 phải bằng 0tuwf đó tính ra đc  x = -3

16 tháng 7 2017

c)\(pt\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x+3\right)^2}=0\)

Đặt căn (x+3) ra ngoài 

17 tháng 1 2019

Đk \(x+3\ge0\Leftrightarrow x\ge-3\)

Đặt \(\sqrt{\frac{x+3}{2}}=t+1\left(t\ge-1\right)\Leftrightarrow x+3=2\left(t+1\right)^2\Leftrightarrow2t^2+4t=x+1\)

Ta có hệ phương trình:

\(\hept{\begin{cases}2x^2+4x=t+1\\2t^2+4t=x+1\end{cases}}\)

Hệ phương trình  đối xứng loại 2 :). Em làm tiếp nhé:)