\(x+\frac{2\sqrt{2}x}{\sqrt{1+x^2}}=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2019

\(PT\Leftrightarrow\frac{2\sqrt{2x}}{\sqrt{1+x^2}}=1-x\)

\(\Leftrightarrow\frac{8x}{1+x^2}=1-2x+x^2\)

\(\Leftrightarrow8x=1+x^2-2x-2x^3+x^2+x^4\)

\(\Leftrightarrow x^4-2x^3+2x^2-10x+1=0\)

.......................

22 tháng 9 2019

Phần sau cùng chỉ có 1 số \(\frac{1}{2}\)thui nha (lỗi kt)

22 tháng 9 2019

đề sai rồi bn

24 tháng 9 2016

1) đặt đk rùi bình phương 2 vế là ok

2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))

<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)

<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)

<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)

<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)

đến đây bình phương 2 vế rùi giải bình thường nhé 

16 tháng 7 2019

\(\sqrt{x+2\sqrt{x-1}=2}\)

\(\Leftrightarrow\sqrt{x-1+2.\sqrt{x-1}.\sqrt{1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(x-1+1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x^2}=2\)

\(\Leftrightarrow x=2\)

Các câu kia lm tương tự........

5 tháng 12 2016

Dk: x\(\ge0\)

lien hop

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+3}=2\Rightarrow x=1\)

7 tháng 12 2016

B​ạn có thể giải thích rõ hộ mình dc k???

4 tháng 7 2017

b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)

\(pt\Leftrightarrow\frac{4}{x}+\sqrt{x-\frac{1}{x}}-\sqrt{\frac{3}{2}}=x+\sqrt{2x-\frac{5}{x}}-\sqrt{\frac{3}{2}}\)

\(\Leftrightarrow\left(\frac{4}{x}-x\right)+\frac{x-\frac{1}{x}-\frac{3}{2}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}=\frac{2x-\frac{5}{x}-\frac{3}{2}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\)

\(\Leftrightarrow\frac{-\left(x-2\right)\left(x+2\right)}{x}+\frac{\frac{\left(x-2\right)\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(x-2\right)\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{-\left(x+2\right)}{x}+\frac{\frac{\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\right)=0\)

Pt trong ngoặc VN suy ra x=2

4 tháng 7 2017

a)\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)

\(\Leftrightarrow x^2+3\sqrt{x^2-1}-1=\sqrt{x^4-x^2+1}-1\)

\(\Leftrightarrow\frac{x^2\left(3\sqrt{x^2-1}+1\right)}{3\sqrt{x^2-1}+1}+\frac{9\left(x^2-1\right)-1}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2+1-1}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{9x^2-10+3x^2\sqrt{x^2-1}+x^2}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{\sqrt{x^2-1}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}=\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{\sqrt{\left(x-1\right)\left(x+1\right)}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{1}{\sqrt{x^2-1}}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2}{\sqrt{x^4-x^2+1}+1}\right)=0\)

pt trong căn vô nghiệm

suy ra x=1; x=-1

30 tháng 7 2017

a)Đk:\(0\le x\le1\)

\(\sqrt{x}+\sqrt{1-x}+\sqrt{x+1}=2\)

\(pt\Leftrightarrow\sqrt{x}+\sqrt{1-x}-1+\sqrt{x+1}-1=0\)

\(\Leftrightarrow\sqrt{x}+\frac{1-x-1}{\sqrt{1-x}+1}+\frac{x+1-1}{\sqrt{x+1}-1}=0\)

\(\Leftrightarrow\frac{x}{\sqrt{x}}-\frac{x}{\sqrt{1-x}+1}+\frac{x}{\sqrt{x+1}-1}=0\)

\(\Leftrightarrow x\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{1-x}+1}+\frac{1}{\sqrt{x+1}-1}\right)=0\)

\(\Rightarrow x=0\)

b)\(\frac{3x+3}{\sqrt{x}}=4+\frac{x+1}{\sqrt{x^2-x+1}}\)

\(pt\Leftrightarrow\frac{3x+3}{\sqrt{x}}-6=\frac{x+1}{\sqrt{x^2-x+1}}-2\)

\(\Leftrightarrow\frac{3x+3-6\sqrt{x}}{\sqrt{x}}=\frac{x+1-2\sqrt{x^2-x+1}}{\sqrt{x^2-x+1}}\)

\(\Leftrightarrow\frac{\frac{\left(3x+3\right)^2-36x}{3x+3+6\sqrt{x}}}{\sqrt{x}}=\frac{\frac{\left(x+1\right)^2-4\left(x^2-x+1\right)}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\)

\(\Leftrightarrow\frac{\frac{9x^2+18x+9-36x}{3x+3+6\sqrt{x}}}{\sqrt{x}}=\frac{\frac{x^2+2x+1-4x^2+4x-4}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\)

\(\Leftrightarrow\frac{\frac{9x^2-18x+9}{3x+3+6\sqrt{x}}}{\sqrt{x}}-\frac{\frac{-3x^2+6x-3}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}=0\)

\(\Leftrightarrow\frac{\frac{9\left(x-1\right)^2}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{3\left(x-1\right)^2}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}=0\)

\(\Leftrightarrow3\left(x-1\right)^2\left(\frac{\frac{3}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{1}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\right)=0\)

Dêx thấy: \(\frac{\frac{3}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{1}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}>0\forall....\)

\(\Rightarrow3\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)

2 tháng 11 2017

a ) x = 0 

b ) x = 1

k tui nha

thanks

4 tháng 3 2018

hello bạn

30 tháng 10 2016

a) Điều kiện \(x+1\ge0\)

Với điều kiện trên phương trình \(\Leftrightarrow x+x^2+x-x^2+2\sqrt{x^2-x^4}=x^2+2x+1\)

\(\Leftrightarrow2\sqrt{x^2-x^4}=x^2+1\\ \Leftrightarrow4\left(x^2-x^4\right)\\ =x^4+2x^2+1\\ \Leftrightarrow5x^4-2x^2+1=0\)

\(\Leftrightarrow\) Phương trình vô nghiệm

31 tháng 10 2016

Lớp 7 làm toán lớp 9.