Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 + x + 1)(6 - 2x) = 0
<=> 6 - 2x = 0 (do x2 + x + 1 > 0)
<=> 2x = 6
<=> x = 3
Vậy S = {3}
(8x - 4)(x2 + 2x + 2) = 0
<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)
<=> 8x = 4
<=> x = 1/2
Vậy S = {1/2}
x3 - 7x + 6 = 0
<=> x3 - x - 6x + 6 = 0
<=> x(x2 - 1) - 6(x - 1) = 0
<=> x(x - 1)(x + 1) - 6(x - 1) = 0
<=> (x2 + x - 6)(x - 1) = 0
<=> (x2 + 3x - 2x - 6)(x - 1) = 0
<=> (x + 3)(x - 2)(x - 1) = 0
<=> x + 3 = 0
hoặc x - 2 = 0
hoặc x - 1 = 0
<=> x = -3
hoặc x = 2
hoặc x = 1
Vậy S = {-3; 1; 2}
x5 - 5x3 + 4x = 0
<=> x(x4 - 5x2 + 4) = 0
<=> x(x4 - x2 - 4x2 + 4) = 0
<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0
<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0
<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1
Vậy S = {-2; -1; 0; 1; 2}
+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)
- Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)
\(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)
Vậy \(S=\left\{3\right\}\)
+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)
- Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)
- Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)
\(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)
Vậy \(S=\left\{\frac{1}{2}\right\}\)
+ Ta có: \(x^3-7x+6=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)
Vậy \(S=\left\{-3;1;2\right\}\)
+ Ta có: \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)
\(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)
\(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)
\(\Leftrightarrow x=0\left(TM\right)\)
hoặc \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)
hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)
Vậy \(S=\left\{-2;-1;0;1;2\right\}\)
!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!
a) \(5x+6=0\Leftrightarrow x=\frac{-6}{5}\)
b) \(7x+8=0\Leftrightarrow x=\frac{-8}{7}\)
x3-4x2+7x-6=0
=>x3-2x2-2x2+3x+4x-6=0
=>x3-2x2+3x-2x2+4x-6=0
=>x(x2-2x+3)-2(x2-2x+3)=0
=>(x-2)(x2-2x+3)=0
=>x-2=0 hoặc x2-2x+3=0
- Với x-2=0 =>x=2
- Với x2-2x+3=0 =>vô nghiệm
Vậy pt trên có nghiệm là x=2
6x4+7x3-36x2-7x+6=0
<=> 6x4-2x3+9x3-3x2-33x2+11x-18x+6=0
<=> 2x3(3x-1)+3x2(3x-1)-11x(3x-1)-6(3x-1)=0
<=> (3x-1)(2x3+3x2-11x-6)=0
<=>(3x-1)(2x3-4x2+7x2-14x+3x-6)=0
<=>(3x-1)[2x2(x-2)+7x(x-2)+3(x-2)]=0
<=>(3x-1)(x-2)(2x2+7x+3)=0
<=>(3x-1)(x-2)(2x2+6x+x+3)=0
<=>(3x-1)(x-2)[2x(x+3)+(x+3)]=0
<=>(3x-1)(x-2)(x+3)(2x+1)=0
th1: 3x+1=0 <=> x=\(-\frac{1}{3}\)
th2: x-2=0 <=> x=2
th3: x+3=0 <=> x=-3
th4: 2x+1=0 <=> x=-\(\frac{1}{2}\)
a) Khai triển bình phương ròii giải như bình thường
b) <=>(x+2)(x2-2x+1)=0
sau đó tiếp tục giải phương trình tích là ra
c) <=>x (2x2-5x-7)=0
<=> x=0
hoặc 2x2-5x-7=0
bn đọc tự giải^^
#hoctốt
#plsss...k☺
a) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
Đặt t = x2+ x => \(t\left(t-2\right)=24\) \(\Leftrightarrow t^2-2t=24\Leftrightarrow t^2-2t-24=0\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=-4\\t=6\end{cases}}\)
-Nếu t = -4 thì x2 + x = -4 \(\Leftrightarrow x^2+x+4=0\left(voly\right)\)
-Nếu t = 6 thì x2 + x = 6 \(\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy phương trình có tập nghiệm S = { 2; -3 }
b) \(2x^3+9x^2+7x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\) Hoặc x + 2 = 0 hoặc x + 3 = 0 hoặc 2 x - 1 = 0
\(\Leftrightarrow\) x = -2 hoặc x = -3 hoặc x = 1/2
Vậy phương trình có tập nghiệm S = { -2; -3; 1/2 }
Đặt \(x^3=y\)
Khi đó pt trở thành \(y^2-7y+6=0\)
\(\Leftrightarrow y^2-6y-y+6=0\)
\(\Leftrightarrow\left(y-6\right)\left(y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-6=0\\y-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=6\\y=1\end{cases}}\)
\(\left(+\right)y=1\Rightarrow x^3=1\Leftrightarrow x=1\)
\(\left(+\right)y=6\Rightarrow x^3=6\Leftrightarrow x=\sqrt[3]{6}\)
Vậy phương trình có nghiệm \(x=1;x=\sqrt[3]{6}\)
\(x^6-7x^3-8=0\)
\(x^6+x^3-8x^3-8=0\)
\(x^3\left(x^3+1\right)-8\left(x^3+1\right)=0\)
\(\left(x^3+1\right)\left(x^3-8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^3+1=0\\x^3-8=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy........
\(x^6-7x^3-8=0\)
\(\Rightarrow x^6+x^3-8x^3-8=0\)
\(\Rightarrow x^3\left(x^3+1\right)-8\left(x^3+1\right)=0\)
\(\Rightarrow\left(x^3+1\right)\left(x^3-8\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2-x+1\right)\left(x-2\right)\left(x^2+2x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x^2-x+1=0\\x-2=0\\x^2+2x+4=0\end{matrix}\right.\)
Mà ta có:
\(x^2-x+1=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(x^2+2x+4=x^2+2x+1+3\)
\(=\left(x+1\right)^2+3\)
=> \(x^2-x+1\) và \(x^2+2x+4\) đều vô nghiệm
=> \(\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)