Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{-1+\sqrt{2}}{2-1}+\frac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\frac{-\sqrt{99}+\sqrt{100}}{100-99}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-....-\sqrt{99}+\sqrt{100}\)
\(=-1+\sqrt{100}\)
\(\hept{\begin{cases}a=\left(x^2-x+1\right)^2\\b=x^2\end{cases}}\)
\(a^2-\left(b+1\right)a+b=0\Leftrightarrow\left(a-1\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x^2-x+1\right)^2=1\\\left(x^2-x+1\right)^2=x^2\end{cases}}\)(easy)
đặt \(\sqrt{2x-x^2}=a\)
phương trình trở thành:
\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)
đến đây thì khai triển đi
\(x^2-2x-2-2\sqrt{2x+1}=0\)
\(\Leftrightarrow x^2-2x-8-\left(2\sqrt{2x+1}-6\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)-\frac{4\left(2x+1\right)-36}{2\sqrt{2x+1}+6}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)-\frac{8\left(x-4\right)}{2\sqrt{2x+1}+6}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2-\frac{8}{2\sqrt{2x+1}+6}\right)=0\)
Thấy: \(x+2-\frac{8}{2\sqrt{2x+1}+6}>0\)
\(\Rightarrow x-4=0\Rightarrow x=4\)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
\(Xét-mẫu-của-biểu-thức:\left(đk:x\ge1\right).ta-có:x-\sqrt{2\left(x^2+5\right)}=\frac{-\left(x^2+10\right)}{x+\sqrt{2\left(x^2+5\right)}}< 0\\
.\)Vậy nó luôn <0 với đk x>=1
\(Xét-tử:đặt-nó-bằng-A=\left(x-2\right)^2-\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)=2\sqrt{x-1}\left(2x-1\right)-\left(x-1\right)\left(x+4\right)\\ =\sqrt{x-1}\left(2\left(2x-1\right)-\sqrt{x-1\left(x+4\right)}\right)\ge0.\\ \)\(=>\left(2\left(2x-1\right)-\sqrt{\left(x-1\right)}\left(x+4\right)\right)\ge0< =>\frac{\left(5-x\right)\left(x-2\right)^2}{2\left(2x-1\right)+\left(x-1\right)\left(x+4\right)}\ge0< =>x\le5\) Vậy . \(1\le x\le5\)
\(\left(4-x^2\right)\left(\sqrt{3x+1}-3+x\right)=0\)\(\left(đk:x\ge-\frac{1}{3}\right)\)
\(\Leftrightarrow\left(2-x\right)\left(2+x\right)\left(\sqrt{3x+1}-3+x\right)=0\)
TH1: 2 - x = 0 <=> x = 2 (t/m)
TH2: 2 + x = 0 <=> x=-2(t/m)
TH3 : \(\sqrt{3x+1}-3+x=0\)
\(\Leftrightarrow\sqrt{3x+1}=3-x\)
\(\Leftrightarrow3x+1=9-6x+x^2\)
\(\Leftrightarrow x^2-9x+8=0\)
\(\Leftrightarrow\left(x-8\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=8\\x=1\end{cases}}\)(t/m)
\(x^4+\left(x^2+1\right)\cdot\sqrt{x^2+1}-1=0\)
\(\left(x^2+1\right)\sqrt{x^2+1}=1-x^4\)
\(\Rightarrow\left(x^2+1\right)^2\cdot\left(x^2+1\right)=\left(1-x^4\right)^2\)
\(\Leftrightarrow\left(x^2+1\right)^3=\left(1-x^2\right)^2\cdot\left(1+x^2\right)^2\)
\(\Leftrightarrow\left(x^2+1\right)^3-\left(1-x^2\right)^2\cdot\left(1+x^2\right)^2=0\)
\(\Leftrightarrow\left(x^2+1\right)^2\left[x^2+1-\left(1-2x^2+x^4\right)\right]=0\)
\(\Leftrightarrow\left(x^2+1\right)^2\left(3x^2-x^4\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2\cdot x^2\left(3-x^2\right)=0\)
\(\Leftrightarrow x^2\cdot\left(x^2+1\right)^2\cdot\left(\sqrt{3}+x\right)\left(\sqrt{3}-x\right)=0\)
Vì \(x^2+1\ge0\) nên \(\left(x^2+1\right)^2\ge0\)
\(\Rightarrow\)\(x^2=0\) hoặc \(\sqrt{3}+x=0\) hoặc \(\sqrt{3}-x=0\)
\(\Rightarrow\)\(x=0\) hoặc \(x=-\sqrt{3}\) hoặc \(x=\sqrt{3}\)
Vậy tập nghiệm của phương trình là: \(S=\left\{-\sqrt{3};0;\sqrt{3}\right\}\)
mình thử chỉ có x = 0 là đúng à. Bài này rắc rối ghê
\(\Rightarrow\orbr{\begin{cases}x^2=0\\\orbr{\begin{cases}\sqrt{3}+x=0\\\sqrt{3}-x=0\end{cases}}\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=-\sqrt{3}\\x=\sqrt{3}\end{cases}}\end{cases}}}\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)+\left(x^2+1\right)\sqrt{x^2+1}-1=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1+\sqrt{x^2+1}+\frac{1}{4}-\frac{9}{4}\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(\sqrt{x^2+1}+\frac{1}{2}-\frac{3}{2}\right)\left(\sqrt{x^2+1}+\frac{1}{2}+\frac{3}{2}\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(\sqrt{x^2+1}-1\right)\left(\sqrt{x^2+1}+2\right)=0\)
tự giải tiếp nhá