K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

\(x^4+\left(x^2+1\right)\cdot\sqrt{x^2+1}-1=0\)

\(\left(x^2+1\right)\sqrt{x^2+1}=1-x^4\)

\(\Rightarrow\left(x^2+1\right)^2\cdot\left(x^2+1\right)=\left(1-x^4\right)^2\)

\(\Leftrightarrow\left(x^2+1\right)^3=\left(1-x^2\right)^2\cdot\left(1+x^2\right)^2\)                     

\(\Leftrightarrow\left(x^2+1\right)^3-\left(1-x^2\right)^2\cdot\left(1+x^2\right)^2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2\left[x^2+1-\left(1-2x^2+x^4\right)\right]=0\)

\(\Leftrightarrow\left(x^2+1\right)^2\left(3x^2-x^4\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2\cdot x^2\left(3-x^2\right)=0\)

\(\Leftrightarrow x^2\cdot\left(x^2+1\right)^2\cdot\left(\sqrt{3}+x\right)\left(\sqrt{3}-x\right)=0\)

Vì  \(x^2+1\ge0\)  nên  \(\left(x^2+1\right)^2\ge0\)

\(\Rightarrow\)\(x^2=0\)  hoặc  \(\sqrt{3}+x=0\)  hoặc  \(\sqrt{3}-x=0\)

\(\Rightarrow\)\(x=0\)  hoặc   \(x=-\sqrt{3}\)  hoặc  \(x=\sqrt{3}\)

Vậy tập nghiệm của phương trình là: \(S=\left\{-\sqrt{3};0;\sqrt{3}\right\}\)

mình thử chỉ có x = 0 là đúng à. Bài này rắc rối ghê

\(\Rightarrow\orbr{\begin{cases}x^2=0\\\orbr{\begin{cases}\sqrt{3}+x=0\\\sqrt{3}-x=0\end{cases}}\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=-\sqrt{3}\\x=\sqrt{3}\end{cases}}\end{cases}}}\)

28 tháng 5 2017

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)+\left(x^2+1\right)\sqrt{x^2+1}-1=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1+\sqrt{x^2+1}+\frac{1}{4}-\frac{9}{4}\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(\sqrt{x^2+1}+\frac{1}{2}-\frac{3}{2}\right)\left(\sqrt{x^2+1}+\frac{1}{2}+\frac{3}{2}\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(\sqrt{x^2+1}-1\right)\left(\sqrt{x^2+1}+2\right)=0\)

tự giải tiếp nhá

6 tháng 8 2016

\(S=\frac{-1+\sqrt{2}}{2-1}+\frac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\frac{-\sqrt{99}+\sqrt{100}}{100-99}\)

\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-....-\sqrt{99}+\sqrt{100}\)

\(=-1+\sqrt{100}\)

\(\hept{\begin{cases}a=\left(x^2-x+1\right)^2\\b=x^2\end{cases}}\)

\(a^2-\left(b+1\right)a+b=0\Leftrightarrow\left(a-1\right)\left(a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x^2-x+1\right)^2=1\\\left(x^2-x+1\right)^2=x^2\end{cases}}\)(easy)

đặt \(\sqrt{2x-x^2}=a\)

phương trình trở thành:

\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)

đến đây thì khai triển đi

22 tháng 8 2017

1/ Đặt  \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x}=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{a}{b}-1=0\\a^2-b^2=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab=a+b\\\left(a+b\right)\left(a-b\right)=1\end{cases}}\)

Tới đây b làm nốt nhé

12 tháng 7 2017

\(x^2-2x-2-2\sqrt{2x+1}=0\)

\(\Leftrightarrow x^2-2x-8-\left(2\sqrt{2x+1}-6\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2\right)-\frac{4\left(2x+1\right)-36}{2\sqrt{2x+1}+6}=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2\right)-\frac{8\left(x-4\right)}{2\sqrt{2x+1}+6}=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2-\frac{8}{2\sqrt{2x+1}+6}\right)=0\)

Thấy: \(x+2-\frac{8}{2\sqrt{2x+1}+6}>0\)

\(\Rightarrow x-4=0\Rightarrow x=4\)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

13 tháng 7 2017

\(Xét-mẫu-của-biểu-thức:\left(đk:x\ge1\right).ta-có:x-\sqrt{2\left(x^2+5\right)}=\frac{-\left(x^2+10\right)}{x+\sqrt{2\left(x^2+5\right)}}< 0\\ .\)Vậy nó luôn <0 với đk x>=1
\(Xét-tử:đặt-nó-bằng-A=\left(x-2\right)^2-\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)=2\sqrt{x-1}\left(2x-1\right)-\left(x-1\right)\left(x+4\right)\\ =\sqrt{x-1}\left(2\left(2x-1\right)-\sqrt{x-1\left(x+4\right)}\right)\ge0.\\ \)\(=>\left(2\left(2x-1\right)-\sqrt{\left(x-1\right)}\left(x+4\right)\right)\ge0< =>\frac{\left(5-x\right)\left(x-2\right)^2}{2\left(2x-1\right)+\left(x-1\right)\left(x+4\right)}\ge0< =>x\le5\) Vậy . \(1\le x\le5\)
 

15 tháng 7 2017

Thank you ^^^

20 tháng 7 2018

\(\left(4-x^2\right)\left(\sqrt{3x+1}-3+x\right)=0\)\(\left(đk:x\ge-\frac{1}{3}\right)\)

\(\Leftrightarrow\left(2-x\right)\left(2+x\right)\left(\sqrt{3x+1}-3+x\right)=0\)

TH1: 2 - x = 0 <=> x = 2 (t/m)

TH2: 2 + x = 0 <=> x=-2(t/m)

TH3 : \(\sqrt{3x+1}-3+x=0\)

\(\Leftrightarrow\sqrt{3x+1}=3-x\)

\(\Leftrightarrow3x+1=9-6x+x^2\)

\(\Leftrightarrow x^2-9x+8=0\)

\(\Leftrightarrow\left(x-8\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=8\\x=1\end{cases}}\)(t/m)