Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pttđ: \(x^2-x-1=2018\left(\sqrt{x^2+x+2}-\sqrt{2x^2+1}\right)\)(1)
Đặt \(\sqrt{2x^2+1}=a;\sqrt{x^2+x+2}=b\Rightarrow x^2-x-1=a^2-b^2\)
(1) <=> a2-b2=2018(b-a)
<=>(a-b)(a+b)=-2018(a-b)
<=>a=b hoặc a+b=-2018
Tự giải tiếp nha
từ a+b=3 => b=3-a
mặt khác: \(a^3-b^2=-3\)
=>\(a^3-\left(3-a\right)^2+3=0\)
\(\Rightarrow a^3-9+6a-a^2+3=0\)
\(\Rightarrow a^3-a^2+6a-6=0\)
\(\Rightarrow a^2\left(a-1\right)+6\left(a-1\right)=0\)
\(\Rightarrow\left(a^2+6\right)\left(a-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}a^2+6=0\\a-1=0\end{cases}\Rightarrow\hept{\begin{cases}a^2=-6\\a=1\end{cases}}}\)
=>a=1 vì \(a^2\ge0\)
=>\(\sqrt[3]{x-2}=1\)
\(\Rightarrow x-2=1\Rightarrow x=3\)
Vậy x=3
b) ta có: Đặt :\(\sqrt[3]{x-2}=a;\) Đk: \(x\ge-1\)
\(\sqrt{x+1}=b;b\ge0\)
ta có:\(\hept{\begin{cases}a+b=3\\a^3-b^2=-3\end{cases}}\)
đến đây dùng pp thế là đc rồi nhé!
a/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow2\sqrt{\left(x-2\right)\left(x+2\right)}-6\sqrt{x-2}+\sqrt{x+2}-3=0\)
\(\Leftrightarrow2\sqrt{x-2}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x-2}+1\right)\left(\sqrt{x+2}-3\right)=0\)
\(\Leftrightarrow\sqrt{x+2}-3=0\Rightarrow x=11\)
b/ ĐKXĐ: ....
Đặt \(\left\{{}\begin{matrix}\sqrt{x-2016}=a>0\\\sqrt{y-2017}=b>0\\\sqrt{z-2018}=a>0\end{matrix}\right.\)
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{a-1}{a^2}+\frac{1}{4}-\frac{b-1}{b^2}+\frac{1}{4}-\frac{c-1}{c^2}=0\)
\(\Leftrightarrow\frac{\left(a-2\right)^2}{a^2}+\frac{\left(b-2\right)^2}{b^2}+\frac{\left(c-2\right)^2}{c^2}=0\)
\(\Leftrightarrow a=b=c=2\Rightarrow\left\{{}\begin{matrix}x=2020\\y=2021\\z=2022\end{matrix}\right.\)
a/ ĐK: \(x\ge0\)
\(\Leftrightarrow\sqrt{3+x}=x^2-3\)
Đặt \(\sqrt{3+x}=a>0\Rightarrow3=a^2-x\) pt trở thành:
\(a=x^2-\left(a^2-x\right)\)
\(\Leftrightarrow x^2-a^2+x-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)
\(\Leftrightarrow x=a\) (do \(x\ge0;a>0\))
\(\Leftrightarrow\sqrt{3+x}=x\Leftrightarrow x^2-x-3=0\)
d/ ĐKXĐ: ...
\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
\(\Leftrightarrow\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^4+2x^2+1-6x^2-1}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}\right)=0\)
\(\Leftrightarrow x=2\) (phần trong ngoặc luôn dương với mọi \(x\ge\frac{3}{2}\))
Ta có:
\(\sqrt{x^2-2018x+2018}+\sqrt{x^2-1009x+1009}=2x\)
\(\Leftrightarrow x-\sqrt{\left(2018x-2018\right)}+x-\sqrt{\left(1009x-1009\right)}=2x\)
\(\Leftrightarrow2x-\sqrt{\left(2018x-2018\right)}-\sqrt{\left(1009x-1009\right)}=2x\)
\(\Leftrightarrow\sqrt{\left(2018x\right)-2018}+\sqrt{\left(1009x-1009\right)}=0\)
\(\Leftrightarrow\sqrt{\left(2018x-2018\right)}=\sqrt{\left(1009x-1009\right)}=0\)
\(\Leftrightarrow2018x-2018=1009x-1009=0\Leftrightarrow x=1\)