\(\sqrt[3]{x+2}+\sqrt[3]{x+4}+\sqrt[3]{x+6}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

Mình giải trước mấy câu dễ dễ ha.

(Tự add điều kiện vào)

Câu 1: \(2\left(2x+1\right)=\sqrt{x+2}-\sqrt{1-x}\)\(\Leftrightarrow2\left(2x+1\right)=\frac{x+2-\left(1-x\right)}{\sqrt{x+2}+\sqrt{1-x}}\)

Thấy \(x=-\frac{1}{2}\) (thoả ĐKXĐ) là nghiệm pt.

Xét \(x\ne-\frac{1}{2}\) thì pt tương đương \(2=\frac{1}{\sqrt{x+2}+\sqrt{1-x}}\Leftrightarrow\sqrt{x+2}+\sqrt{1-x}=2\) (1)

Bình phương lên: \(x+2+1-x+2\sqrt{\left(x+2\right)\left(1-x\right)}=4\Leftrightarrow\sqrt{\left(x+2\right)\left(1-x\right)}=\frac{1}{2}\) (2)

Đến đây từ (1) và (2) dùng định lí Viete đảo thấy pt vô nghiệm.

-----

Câu 2: (Tư tưởng đổi biến quá rõ ràng)

Đặt \(a=\sqrt{x+3},b=\sqrt{6-x}\). Có hệ: \(\hept{\begin{cases}a+b-ab=\frac{6\sqrt{2}-9}{2}\\a^2+b^2=9\end{cases}}\)

(Tự giải tiếp nha bạn. Tới đây đặt \(S=a+b,P=ab\) là ra thôi)

-----

Câu 4: Đặt \(y=x^2\) thì pt trở thành \(y^2+\sqrt{y+2016}=2016\) (\(y\) không âm)

(Bạn tự CM \(y=k=\frac{\sqrt{8061}-1}{2}\) là nghiệm)

Xét \(0\le y< k\) thì vế trái \(< 2016\), xét \(y>k\) thì vế phải \(>2016\).

Vậy pt có nghiệm duy nhất \(y=k\) như trên. Hay pt đầu có 2 nghiệm (cộng trừ)\(\sqrt{\frac{\sqrt{8061}-1}{2}}\)

8 tháng 1 2017

thank bạn Trần Quốc Đạt

12 tháng 10 2020

b dễ làm trước,a ko biết làm   ):

b)\(\sqrt{2+\sqrt{x}}=3\)

ĐK : \(\sqrt{x}=7\)

\(x=49\)

\(\sqrt{2+\sqrt{49}}=3\Rightarrow\sqrt{2+7}=3\Leftrightarrow\sqrt{9}=3\Rightarrow3=3\)

12 tháng 10 2020

\(\sqrt{\frac{1}{4}x^2+x+1}-\sqrt{6-2\sqrt{5}}=0\)

<=> \(\sqrt{\left(\frac{1}{2}x\right)^2+2\cdot\frac{1}{2}x\cdot1+1^2}-\sqrt{5-2\sqrt{5}+1}=0\)

<=> \(\sqrt{\left(\frac{1}{2}x+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)

<=> \(\left|\frac{1}{2}x+1\right|-\left|\sqrt{5}-1\right|=0\)

<=> \(\left|\frac{1}{2}x+1\right|-\left(\sqrt{5}-1\right)=0\)

<=> \(\left|\frac{1}{2}x+1\right|=\sqrt{5}-1\)

<=> \(\orbr{\begin{cases}\frac{1}{2}x+1=\sqrt{5}-1\\\frac{1}{2}x+1=1-\sqrt{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4+2\sqrt{5}\\x=-2\sqrt{5}\end{cases}}\)

b) \(\sqrt{2+\sqrt{x}}=3\)

ĐK : x ≥ 0

Bình phương hai vế

pt <=> \(2+\sqrt{x}=9\)

    <=> \(\sqrt{x}=7\)

    <=> \(x=49\left(tm\right)\)

13 tháng 6 2017

Giải câu d thôi mấy câu còn lại đơn giản lắm nên bạn tự làm.

d/ \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

Điều kiện \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

\(\Leftrightarrow\sqrt{\left(2-\sqrt{x-1}\right)^2}+\sqrt{\left(3-\sqrt{x-1}\right)^2}=1\)

\(\Leftrightarrow|2-\sqrt{x-1}|+|3-\sqrt{x-1}|=1\)

Đây chỉ là phương trình cơ bản của trị tuyệt đối lớp 6, 7 học rồi nên bạn tự làm nhé.

20 tháng 5 2017

Sorry nha , em ko bt làm đâu , em mới học lớp 5 thui

20 tháng 5 2017

sory nha ae cũng ko biết làm đâu... em mới lên lớp 6 thôi