\(\sin^{1979}x+\cos^{1991}x+\sin2x+\cos2x=1+\sqrt{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 10 2020

\(\left|sinx\right|;\left|cosx\right|\le1\Rightarrow sin^{1979}x+cos^{1991}x\le sin^2x+cos^2x=1\)

\(sin2x+cos2x=\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)\le\sqrt{2}\)

\(\Rightarrow VT\le1+\sqrt{2}\)

Đẳng thức xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}sinx=0\\cosx=1\end{matrix}\right.\\\left\{{}\begin{matrix}sinx=1\\cosx=0\end{matrix}\right.\end{matrix}\right.\\sin\left(2x+\frac{\pi}{4}\right)=1\end{matrix}\right.\) (ko tồn tại x thỏa mãn)

Vậy pt vô nghiệm

NV
11 tháng 2 2020

a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp

b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)

\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)

\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)

\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)

c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:

\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)

Đặt \(\sqrt{tanx+1}=t\ge0\)

\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)

\(\Leftrightarrow3t^3-5t^2+3t-10=0\)

\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)

d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)

Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)

\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)

\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)

11 tháng 4 2016

Phương trình đã cho tương đương với :

\(1+\frac{\sqrt{3}}{2}\sin2x-\frac{1}{2}\cos2x-3\left(\frac{\sqrt{3}}{2}\sin x+\frac{1}{2}\cos x\right)=0\)

\(\Leftrightarrow1-\cos\left(2x+\frac{\pi}{3}\right)-3\sin\left(x+\frac{\pi}{6}\right)=0\)

\(2\sin^2\left(x+\frac{\pi}{6}\right)-2\sin\left(x+\frac{\pi}{6}\right)=0\Leftrightarrow\begin{cases}\sin\left(x+\frac{\pi}{6}\right)=0\\\sin\left(x+\frac{\pi}{6}\right)=\frac{3}{2}\end{cases}\) (Loại \(\sin\left(x+\frac{\pi}{6}\right)=\frac{3}{2}\))

Với \(\sin\left(x+\frac{\pi}{6}\right)=0\Rightarrow x=-\frac{\pi}{6}+k\pi,k\in Z\)

4 tháng 7 2017

A

12 tháng 7 2018

3sin 2x+cos 2x=2cosx-1

<=>2√3 sinx.cox+cos2x -sin2x -2cosx+cos2x+sin2x=0

<=>2√3sinx.cosx+2cos2x -2cosx=0

<=>cosx(√3sinx+cosx -1)=0

*cosx=0 =>x=pi/2+k.pi

*√3sinx+cosx -1=0

<=>sin(x+pi/6)=1/2 <=>x=...

NV
15 tháng 10 2020

1.

\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)

\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

NV
15 tháng 10 2020

2.

\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)

\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)

Xét (1):

Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác