Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
Ta có :\(pt\Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-3\left(\frac{2\left(x-2\right)}{x-4}\right)^2=0\)
Đặt \(\frac{x+1}{x-2}=a;\frac{x-2}{x-4}=b\)
\(\Rightarrow a^2+ab-6b^2=0\)\(\Leftrightarrow\left(a+3b\right)\left(a-2b\right)=0\Rightarrow\orbr{\begin{cases}a+3b=0\\a-2b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}}\)
Đến đây thao vào giải tiếp
Ta có :\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)(1)
<=> \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-3\left[\frac{2\left(x-2\right)}{x-4}\right]^2=0\)
<=> \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\)
Đặt \(\frac{x+1}{x-2}=a\); \(\frac{x-2}{x-4}=b\)
khi đó (1) <=> \(a^2+ab-12b^2=0\)
<=> \(a^2+4ab-3ab-12b^2=0\)
<=> \(a\left(a+4b\right)-3b\left(a+4b\right)=0\)
<=> \(\left(a+4b\right)\left(a-3b\right)=0\)
<=> \(\orbr{\begin{cases}a+4b=0\\a-3b=0\end{cases}}\)<=> \(\orbr{\begin{cases}a=-4b\\a=3b\end{cases}}\)
tôi mới làm ngang đây thì chịu rồi giải tiếp giúp tôi với! OK?
a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có
\(a^2+b-\frac{12b^2}{a^2}=0\)
\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)
b/ \(2x^2+3xy-2y^2=7\)
\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)
a, \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right).\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{3}+\frac{9-4x^2}{8}+\frac{x^2-8x+16}{6}=0\)
\(\Leftrightarrow\frac{8\left(x^2-4x+4\right)+3\left(9-4x^2\right)+4\left(x^2-8x+16\right)}{24}=0\)
\(\Leftrightarrow\frac{8x^2-32x+32+27-12x^2+4x^2-32x+64}{24}=0\)
\(\Leftrightarrow\frac{123-64x}{24}=0\Leftrightarrow123-64x=0\Leftrightarrow x=\frac{123}{64}\)
\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-2\right)^2}+\frac{x+1}{x-4}-\frac{3\left(2x-4\right)^2}{\left(x-4\right)^2}=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-4\right)^2+\left(x+1\right)\left(x-2\right)^2\left(x-4\right)-3\left(2x-4\right)^2\left(x-2\right)^2=0\)
\(\Leftrightarrow-\left(x-3\right)\left(5x-4\right)\left(2x^2-9x+16\right)=0\)
Mà \(2x^2-6x+16\ne0\) nên:
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\5x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{4}{5}\end{cases}}\)
Vậy: nghiệm phương trình là: \(x=3;x=\frac{4}{5}\)
Bạn đặt ẩn phụ và làm nhé :
Đặt \(a=\frac{x+1}{x-2},b=\frac{x-2}{x-4}\Rightarrow ab=\frac{x+1}{x-4}\)
Khi đó pt có dạng :
\(a^2+ab-12b^2=0\)