\(\dfrac{1}{x^2}+\sqrt{x+2}=\dfrac{1}{x}+\sqrt{2x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 2 2024

ĐKXĐ: \(x\ge-\dfrac{1}{2};x\ne0\)

\(\dfrac{1}{x^2}-\dfrac{1}{x}=\sqrt{2x+1}-\sqrt{x+2}\)

\(\Leftrightarrow-\dfrac{x-1}{x^2}=\dfrac{x-1}{\sqrt{2x+1}+\sqrt{x+2}}\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{2x+1}+\sqrt{x+2}}+\dfrac{1}{x^2}\right)=0\)

\(\Leftrightarrow x-1=0\) (do \(\dfrac{1}{\sqrt{2x+1}+\sqrt{x+2}}+\dfrac{1}{x^2}\) luôn dương)

\(\Leftrightarrow x=1\)

19 tháng 2 2024

Đk: \(x\ge-\dfrac{1}{2},x\ne0\)

pt \(\Leftrightarrow\dfrac{1}{x^2}-\dfrac{1}{x}=\sqrt{2x+1}-\sqrt{x+2}\)

\(\Leftrightarrow\dfrac{1-x}{x^2}=\dfrac{2x+1-\left(x+2\right)}{\sqrt{2x+1}+\sqrt{x+2}}\)

\(\Leftrightarrow\dfrac{1-x}{x^2}=\dfrac{x-1}{\sqrt{2x+1}+\sqrt{x+2}}\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{2x+1}+\sqrt{x+2}}+\dfrac{1}{x^2}\right)=0\)

\(\Leftrightarrow x=1\) (vì \(\dfrac{1}{\sqrt{2x+1}+\sqrt{x+2}}+\dfrac{1}{x^2}>0\))

Vậy \(S=\left\{1\right\}\)

7 tháng 3 2021

a) \(\frac{1}{x-1+\sqrt{x^2-2x+3}}+\frac{1}{x-1-\sqrt{x^2-2x+3}}=1\)

ĐKXĐ : \(x\inℝ\)

\(\Leftrightarrow\frac{x-1-\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}+\frac{x-1+\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}=\frac{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}\)

\(\Rightarrow2x-2=\left[\left(x-1\right)+\left(\sqrt{x^2-2x+3}\right)\right]\left[\left(x-1\right)-\left(\sqrt{x^2-2x+3}\right)\right]\)

\(\Leftrightarrow2x-2=\left(x-1\right)^2-\left(\sqrt{x^2-2x+3}\right)^2\)

\(\Leftrightarrow2x-2=x^2-2x+1-\left(x^2-2x+3\right)\)

\(\Leftrightarrow2x-2=x^2-2x+1-x^2+2x-3\)

\(\Leftrightarrow2x-2=-2\)

\(\Leftrightarrow2x=0\)

\(\Leftrightarrow x=0\)

Vậy phương trình có nghiệm duy nhất x = 0