\(^{\left(x^2+1\right)^2}\)+3x\(^{\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

Ta có: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2+2x\left(x^2+1\right)+x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+2x+1\right)+x\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên \(x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Vậy: S={-1}

22 tháng 4 2017

Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

21 tháng 3 2021

a)(2x+1)(3x-2)=(5x-8)(2x+1)

⇔(2x+1)(3x-2)-(5x-8)(2x+1)=0

⇔(2x+1)(3x-2-5x+8)=0

⇔(2x+1)(-2x+6)=0

⇔2x+1=0 hoặc -2x+6=0

1.2x+1=0⇔2x=-1⇔x=-1/2

2.-2x+6=0⇔-2x=-6⇔x=3

phương trình có 2 nghiệm x=-1/2 và x=3

\(\left(x-5\right)\left(x-1\right)=2x\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-5-2x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

Vậy............

\(5\left(x+3\right)\left(x-2\right)-3\left(x+5\right)\left(x+2\right)=0\)

\(\Leftrightarrow5\left(x^2+x-6\right)-3\left(x^2+7x+10\right)=0\)

\(\Leftrightarrow2x^2-16x-60=0\)

\(\Leftrightarrow x^2-8x-30=0\)

làm tiếp nhé!!!!!

7 tháng 2 2020

\(a,2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-5\\x=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=3\end{cases}}\)

Vậy .........

\(b,\left(x^2-4\right)+\left(x-2\right)\left(3-2x=0\right)\)

\(\Leftrightarrow x^2-4-2x^2+7x-6=0\)

\(\Leftrightarrow-x^2+7x-10=0\)

\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}\)

Vậy ..................

\(c,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x=1\)

\(d,x\left(2x-7\right)-4x+14=0\)

\(\Leftrightarrow2x^2-7x-4x+14=0\)

\(\Leftrightarrow2x^2-11x+14=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)

Vậy ............

\(e,\left(2x-5\right)^2-\left(x+2\right)^2=0\)

\(\Leftrightarrow4x^2-20x+25-x^2-4x-4=0\)

\(\Leftrightarrow3x^2-24x+21=0\)

\(\Leftrightarrow3\left(x-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=1\end{cases}}\)

Vậy .....................

\(f,x^2-x-\left(3x-3\right)=0\)

\(\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Vậy ..............

24 tháng 1 2018

a) đặt \(\left(x^2+x\right)\)là \(y\)

ta có: \(3y^2-7y+4\)\(=0\)

<=>\(\left(3y-4\right)\left(y-1\right)=0\)

còn lại bạn tự xử nhé 

12 tháng 2 2020

Đặt \(u=x^2-x\)

Phương trình trở thành \(u^2-4u+4=0\)

\(\Leftrightarrow\left(u-2\right)^2=0\)

\(\Leftrightarrow u-2=0\)

\(\Rightarrow x^2-x=2\)

\(\Rightarrow x^2-x-2=0\)

Ta có \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1+3}{2}=2\\x=\frac{1-3}{2}=-1\end{cases}}\)

12 tháng 2 2020

Đặt \(2x+1=w\)

Phương trình trở thành \(w^2-w=2\)

\(\Rightarrow\orbr{\begin{cases}w=2\\w=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=2\\2x+1=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)

28 tháng 5 2017

a) (x-1)(5x+3)=(3x-8)(x-1)

= (x-1)(5x+3)-(3x-8)(x-1)=0

=(x-1)[(5x+3)-(3x-8)]=0

=(x-1)(5x+3-3x+8)=0

=(x-1)(2x+11)=0

\(\Leftrightarrow\) x-1=0 hoặc 2x+11=0

\(\Leftrightarrow\) x=1 hoặc x=\(\dfrac{-11}{2}\)

Vậy S={1;\(\dfrac{-11}{2}\)}

b) 3x(25x+15)-35(5x+3)=0

=3x.5(5x+3)-35(5x+3)=0

=15x(5x+3)-35(5x+3)=0

=(5x+3)(15x-35)=0

\(\Leftrightarrow\) 5x+3=0 hoặc 15x-35=0

\(\Leftrightarrow\) x=\(\dfrac{-3}{5}\) hoặc x=\(\dfrac{7}{3}\)

Vậy S={\(\dfrac{-3}{5};\dfrac{7}{3}\)}

c) (2-3x)(x+11)=(3x-2)(2-5x)

=(2-3x)(x+11)-(3x-2)(2-5x)=0

=(3x-2)[(x+11)-(2-5x)]=0

=(3x-2)(x+11-2+5x)=0

=(3x-2)(6x+9)=0

\(\Leftrightarrow\) 3x-2=0 hoặc 6x+9=0

\(\Leftrightarrow\) x=\(\dfrac{2}{3}\) hoặc x=\(\dfrac{-3}{2}\)

Vậy S={\(\dfrac{2}{3};\dfrac{-3}{2}\)}

d) (2x2+1)(4x-3)=(2x2+1)(x-12)

=(2x2+1)(4x-3)-(2x2+1)(x-12)=0

=(2x2+1)[(4x-3)-(x-12)=0

=(2x2+1)(4x-3-x+12)=0

=(2x2+1)(3x+9)=0

\(\Leftrightarrow\)2x2+1=0 hoặc 3x+9=0

\(\Leftrightarrow\)x=\(\dfrac{1}{2}\)hoặc x=\(\dfrac{-1}{2}\) hoặc x=-3

Vậy S={\(\dfrac{1}{2};\dfrac{-1}{2};-3\)}

e) (2x-1)2+(2-x)(2x-1)=0

=(2x-1)[(2x-1)+(2-x)=0

=(2x-1)(2x-1+2-x)=0

=(2x-1)(x+1)=0

\(\Leftrightarrow\) 2x-1=0 hoặc x+1=0

\(\Leftrightarrow\) x=\(\dfrac{-1}{2}\) hoặc x=-1

Vậy S={\(\dfrac{-1}{2}\);-1}

f)(x+2)(3-4x)=x2+4x+4

=(x+2)(3-4x)=(x+2)2

=(x+2)(3-4x)-(x+2)2=0

=(x+2)[(3-4x)-(x+2)]=0

=(x+2)(3-4x-x-2)=0

=(x+2)(-5x+1)=0

\(\Leftrightarrow\) x+2=0 hoặc -5x+1=0

\(\Leftrightarrow\) x=-2 hoặc x=\(\dfrac{1}{5}\)

Vậy S={-2;\(\dfrac{1}{5}\)}

6 tháng 7 2017

Ta có : (x + 1)(x + 2)(x + 3)(x + 4) = 3x2

=> [(x + 1)(x + 4)][(x + 2)(x + 3)] = 3x2

=> (x2 + 5x + 4) (x2 + 5x + 6) = 3x2

Đặt x2 + 5x + 5 = a 

Thay vào biểu thức ta có : (a - 1)(a + 1) = 3x2

<=> a2 - 1 = 3a2

<=> (x+ 5x + 5)2 = 3x2

<=> x4 + 10x2 + 15 = 3x2

=> x+ 10x2 + 15 - 3x2 = 0

<=> x4 + 7x2 + 15 = 0

<=> (x2 + 3,5)2 + 2,75 = 0

=> sai đề 

22 tháng 4 2017

Giải bài 22 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 22 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 22 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

18 tháng 5 2017

giải đc sao pn dễ mk

19 tháng 5 2017

chẳng ai giải, thôi mình giải vậy!

a) Đặt \(y=x^2+4x+8\),phương trình có dạng:

\(t^2+3x\cdot t+2x^2=0\)

\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)

\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}

b) nhân 2 vế của phương trình với 12 ta được:

\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)

Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)

giải tiếp ra ta sẽ được S={-2/3;-5/3}

c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)

S={3;5}

d)s={1}

e) S={1;-2;-1/2}

f) phương trình vô nghiệm