\(\left(1-\sqrt{2}\right)x^2-2x\sqrt{2}+\sqrt{2}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(PT\Leftrightarrow x^2-\sqrt{2}\left(x^2+2x-1\right)=0\)

Đề có nhầm không????

Học tốt!!!!!!!!!!!!!!

đặt \(\sqrt{2x-x^2}=a\)

phương trình trở thành:

\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)

đến đây thì khai triển đi

22 tháng 8 2017

1/ Đặt  \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x}=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{a}{b}-1=0\\a^2-b^2=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab=a+b\\\left(a+b\right)\left(a-b\right)=1\end{cases}}\)

Tới đây b làm nốt nhé

24 tháng 6 2017

c) 

\(\sqrt{\left(x-1\right)^2}=2\)

x-1=2

x=3

d) \(\Leftrightarrow2+3\sqrt{x}+x=x+5\)

\(\Leftrightarrow3\sqrt{x}=3\)

<=> x=1

24 tháng 6 2017

a) 

\(\Leftrightarrow\sqrt{\left(x+2\right)}.\sqrt{\left(x-2\right)}-\sqrt{x+2}=0\)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+2}=0\\\sqrt{x-2}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

b)

\(\Leftrightarrow\sqrt{\left(x-2\right)+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{\left(x-2\right)-2\sqrt{2}.\sqrt{x-2}+2}=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)

\(\Leftrightarrow2\sqrt{x-2}+\sqrt{2}-\sqrt{2}=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{x-2}=\sqrt{2}\)

\(\Leftrightarrow x-2=2\)

\(\Leftrightarrow x=4\)

2 phần kia mình đăng sau (dài quá r)

30 tháng 6 2017

a)Đk:\(x\ge\frac{1}{2}\)

\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)

Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)

\(t^4-4t^2+4t-1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt

20 tháng 8 2016

a)

\(\sqrt{2}.x-\sqrt{98}=0\)

\(\Leftrightarrow x-\sqrt{49}=0\)

\(\Leftrightarrow x-7=0\)

<=> x = 7

b)

\(\sqrt{2x}=\sqrt{8}\)

\(\Leftrightarrow\sqrt{x}=\sqrt{4}\)

<=> x = 4

c)

\(\sqrt{5}.x^2=\sqrt{20}\)

\(\Rightarrow x^2=\sqrt{4}\)

\(\Rightarrow x^2=2\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\end{array}\right.\)

d)

\(2x^2-\sqrt{100}=0\)

\(\Leftrightarrow2x^2=10\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\end{array}\right.\)

20 tháng 8 2016

a/ \(\sqrt{2}x-\sqrt{98}=0\Leftrightarrow\sqrt{2}x=\sqrt{98}\Leftrightarrow x=7\)

b/ \(\sqrt{2x}=\sqrt{8}\) (ĐKXĐ : \(x\ge0\))

\(\Leftrightarrow2x=8\Leftrightarrow x=4\)

c/ \(\sqrt{5}x^2=\sqrt{20}\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

d/ \(2x^2-\sqrt{100}=0\Leftrightarrow2x^2=10\Leftrightarrow x^2=5\Leftrightarrow x=\pm\sqrt{5}\)