\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)( * )

Đặt \(a=2x^2+x-2013\)

\(\)Đặt \(b=x^2-5x-2012\)

Khi đó ( * ) trở thành:

\(a^2+4b^2=4ab\)

\(\Leftrightarrow a^2+4b^2-4ab=0\)

\(\Leftrightarrow a^2-4ab+4b^2=0\)

\(\Leftrightarrow\left(a-2b\right)^2=0\)

\(\Leftrightarrow a-2b=0\)

\(\Leftrightarrow a=2b\)

\(\Leftrightarrow2x^2+x-2013=2\left(x^2-5x-2012\right)\)

\(\Leftrightarrow2x^2+x-2013-2x^2+10x+4024=0\)

\(\Leftrightarrow11x+2011=0\)

\(\Leftrightarrow x=\dfrac{-2011}{11}\)

Vậy...

đặt: \(x=2x^2+x-2013\\ y=x^2-5x-2012\), khi đó:

\(x^2+4y^2=4xy\\ \Leftrightarrow x^2-4xy+y^2=0\\ \Leftrightarrow\left(x-2y\right)^2=0\Rightarrow x-2y=0\\ \Leftrightarrow x=2y\\ \Rightarrow2x^2+x-2013=2x^2-10x-4024\)

\(\Leftrightarrow11x=-2011\\ \Leftrightarrow x=-\dfrac{2011}{11}\)

vậy ........

5 tháng 10 2019

\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2\)

\(=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)

Đặt  \(\hept{\begin{cases}2x^2+x-2013=a\\x^2-5x-2012=b\end{cases}}\) thì ta có :

\(a^2+4b^2=4ab\Rightarrow a^2+b^2-4ab=0\)

\(\Rightarrow\left(a-2b\right)^2=0\Rightarrow a-2b\Rightarrow a=2b\)

Tức là :

\(2x^2+x-2013=2\left(x^2-5x-2012\right)\)

\(\Leftrightarrow2x^2+x-2013=2x^2-10x-4024\)

\(\Leftrightarrow11x+2011=0\Leftrightarrow11x=-2011\Rightarrow x=-\frac{2011}{11}\)

Chúc bạn học tốt !!!

26 tháng 7 2018

Đặt 2x^2 + x +2013 = a, x^2-5x+2012 = b

Ta có: a^2 + 4b^2 = 4ab

          a^2 - 4ab + 4b^2 = 0

          (a-2b)^2 = 0

Do đó: a = 2b

Hay: 2x^2 + x -2013 = 2(x^2 -5x -2012)     

        2x^2 + x -2013 = 2x^2 -10x -4024

        x-2013 = -10x -4024

        x+10x = -4024+2013

        11x = -2011

         x = -2011/11

Bạn hỏi nhiều câu hay đấy. Chúc bạn học tốt.   

12 tháng 1 2018

Sửa tí nha kết quả cuối sai dâu phải là \(x=\dfrac{-2011}{11}\)

12 tháng 1 2018

\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\\ \Leftrightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+4\left(x^2-5x-2012\right)^2=0\\ \Leftrightarrow\left[2x^2+x-2013-2\left(x^2-5x-2012\right)\right]^2=0\\ \Leftrightarrow\left(11x+2011\right)^2=0\\ \Leftrightarrow11x+2011=0\\ \Leftrightarrow x=\dfrac{2011}{11}\)

Bài 2:a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) \(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) \(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) \(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) \(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) Có: \(\left|y+3\right|\ge0\) \(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) Do...
Đọc tiếp

Bài 2:

a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) 

\(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) 

\(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) 

\(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) 

\(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) 

Có: \(\left|y+3\right|\ge0\) 

\(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) 

Do đó: \(\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]=0\) 

\(\Leftrightarrow\hept{\begin{cases}y+3=0\\x+y=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\) 

b. \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\) 

\(\Leftrightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+\left[2\left(x^2-5x-2012\right)\right]^2=0\) 

\(\Leftrightarrow\left(2x^2+x-2013-2x^2+10x+4024\right)^2=0\) 

\(\Leftrightarrow\left(11x+2011\right)^2=0\) 

\(\Leftrightarrow11x+2011=0\) 

\(\Leftrightarrow x=-\frac{2011}{11}\) 

0
13 tháng 2 2019

Bài 17)

(x - 2)^4 + (x - 6)^4 = 82
Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5

13 tháng 2 2019

Bài 18: Phương trình đã cho được viết thành: $${({x^2} + 6x + 10)^2} + (x + 3)\left[ {3\left( {{x^2} + 6x + 10} \right) + 2\left( {x + 3} \right)} \right] = 0$$
Đặt $u = {x^2} + 6x + 10 > 0,v = x + 3$, suy ra:
$${u^2} + v\left( {3u + 2v} \right) = 0 \Leftrightarrow \left( {u + v} \right)\left( {u + 2v} \right) = 0 \Leftrightarrow \left[ \begin{gathered}
u + v = 0 \\
u + 2v = 0 \\
\end{gathered} \right.$$
$$ \Leftrightarrow \left[ \begin{gathered}
{x^2} + 6x + 10 + x + 3 = 0 \\
{x^2} + 6x + 10 + 2\left( {x + 3} \right) = 0 \\
\end{gathered} \right. \Leftrightarrow \left[ \begin{gathered}
{x^2} + 7x + 13 = 0 \\
{x^2} + 8x + 16 = 0 \\
\end{gathered} \right. \Leftrightarrow x = - 4$$