Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\dfrac{x-1}{5}+x=\dfrac{x+1}{7}\)
\(\Leftrightarrow\dfrac{7x-7}{35}+\dfrac{35x}{35}=\dfrac{5x+5}{35}\)
\(\Rightarrow7x-7+35x=5x+5\)
\(\Leftrightarrow7x+35x-5x=5+7\)
\(\Leftrightarrow37x=12\)
\(\Leftrightarrow x=\dfrac{12}{37}\)
Vậy pt có nghiệm duy nhất \(x=\dfrac{12}{37}\)
d) \(2\left(x-2,5\right)=0,25+\dfrac{4x-3}{8}\)
\(\Leftrightarrow\dfrac{16\left(x-2,5\right)}{8}=\dfrac{2}{8}+\dfrac{4x-3}{8}\)
\(\Rightarrow16x-40=2+4x-3\)
\(\Leftrightarrow16x-4x=2-3+40\)
\(\Leftrightarrow12x=39\)
\(\Leftrightarrow x=3,25\)
Vậy pt có nghiệm duy nhất \(x=3,25\)
BPT <=> -3x2+15x-12>0
<=> x2-5x+4<0
<=> (x-1)(x-4)<0
<=> \(\hept{\begin{cases}x-1>0\\x-4< 0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\x-4>0\end{cases}}\)(loại)
<=> 1<x<4
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
giải các phương trình sau:
a) 6x-3= 4x+5
b) \(\dfrac{2x+3}{x+1}\)- \(\dfrac{6}{x}\)= 2
c) \(|3x-1|\)=3x
a)\(6x-3=4x+5\)
\(\Rightarrow6x-3-4x-5=0\)
\(\Rightarrow2x-8=0\)
\(\Rightarrow x=4\)
Vậy x=4
b)\(\frac{2x+3}{x+1}-\frac{6}{x}=2\left(ĐKXĐ:x\ne-1;0\right)\)
\(\Rightarrow\frac{2x^2+3x}{x\left(x+1\right)}-\frac{6x+6}{x\left(x+1\right)}=2\)
\(\Rightarrow\frac{2x^2+3x-6x-6}{x\left(x+1\right)}=2\)
\(\Rightarrow2x^2-3x-6=2\left(x^2+x\right)\)
\(\Rightarrow2x^2-3x-6-2x^2-2x=0\)
\(\Rightarrow-5x-6=0\)
\(\Rightarrow x=-\frac{6}{5}\)
Vậy \(x=-\frac{6}{5}\)
c)\(\left|3x-1\right|=3x\left(1\right)\)
TH1:\(x\ge\frac{1}{3}\).PT(1) có dạng:3x-1=3x
0x=1
PT vô nghiệm
TH2:\(x< \frac{1}{3}\).PT(1) có dạng:1-3x=3x
\(\Rightarrow6x=1\)
\(\Rightarrow x=\frac{1}{6}\left(TM\right)\)
Vậy PT có nghiệm là \(\frac{1}{6}\)
a, \(6x-3=4x+5 \)
\(\Leftrightarrow6x-4x=5+3\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)
vậy no của pt là : x = 4
b, \(\frac{2x+3}{x+1}-\frac{6}{x}=2\)
ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne0\end{cases}}\)
\(\Leftrightarrow\frac{2x^2+3x-6x-6}{x\left(x+1\right)}=2\)
\(\Leftrightarrow\frac{2x^2-3x-6}{x\left(x+1\right)}=2\)
\(\Leftrightarrow2x^2-3x-6=2x^2+2x\)
\(\Leftrightarrow-5x=6\)
\(\Leftrightarrow x=\frac{-6}{5}\)
vậy no của pt là x=-6/5
c, \(\left|3x-1\right|=3x\)
Với \(3x-1\ge0\)
\(\Rightarrow3x-1=3x\Leftrightarrow-1=0\)( vô lí )
\(a\)) \(2\left(x+1\right)=4x+2\)
\(\Leftrightarrow4x+2=4x+2\)
\(\Leftrightarrow0x=0\)
Vậy phương trình đã cho có vô số nghiệm .
b) \(x^2-9x+8=0\)
\(\Leftrightarrow x^2-9x+9-1=0\)
\(\Leftrightarrow\left(x^2-9x+9\right)^2-1=0\)
\(\Leftrightarrow\left(x-3\right)^2-1=0\)
\(\Leftrightarrow\left(x-3+1\right)\left(x-3-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy phương trình có nghiệm x = 2 hoặc x = 4 .
c) \(\dfrac{x+2}{x+3}-\dfrac{1}{x}=\dfrac{-3}{x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne0;x\ne-3\right)\)
\(\Rightarrow x\left(x+2\right)-x-3+3=0\)
\(\Leftrightarrow x^2+2x-x=0\)
\(\Leftrightarrow x\left(x+2-1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy phương trình có nghiệm x = -1 .
Tick cho mình nha Hanako Aki
a/ \(2\left(x+1\right)=4x+2\)
\(\Leftrightarrow2x+2=4x+2\)
\(\Leftrightarrow2x-4x=2-2\)
\(\Leftrightarrow-2x=0\)
\(\Rightarrow x=0\)
b/ dễ => tự lm hoặc vào link:
https://hoc24.vn/hoi-dap/question/205563.html
c/ \(\dfrac{x+2}{x+3}-\dfrac{1}{x}=\dfrac{-3}{x\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{x+2}{x+3}-\dfrac{1}{x}-\dfrac{-3}{x\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{x\left(x+2\right)-1\left(x+3\right)+3}{x\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+2x-x-3+3}{x\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+x}{x\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{x\left(x+3\right)\ne0}=0\)
\(\Rightarrow x\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\Rightarrow x=-1\end{matrix}\right.\) Vậy pt có 2 ngiệm là:\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
a) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Rightarrow\left(x^2+4x+8\right)^2+2.\dfrac{3}{2}x\left(x^2+4x+8\right)+\dfrac{9}{4}x^2-\dfrac{1}{4}x^2=0\)
\(\Rightarrow\left(x^2+4x+8+\dfrac{3}{2}x\right)^2-\left(\dfrac{1}{2}x\right)^2=0\)
\(\Rightarrow\left(x^2+4x+8+\dfrac{3}{2}x-\dfrac{1}{2}x\right)\left(x^2+4x+8+\dfrac{3}{2}x+\dfrac{1}{2}x\right)=0\)
\(\Rightarrow\left(x^2+4x+8+x\right)\left(x^2+4x+8+2x\right)=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left(x^2+6x+8\right)=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left(x^2+2x+4x+8\right)=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)=0\)
Vì x2 ≥ 0 với mọi x
⇒ x2 + 5x + 8 ≥ 0 với mọi x
\(\Rightarrow\left(x+2\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
b) \(\dfrac{x-5}{2017}+\dfrac{x-2}{2020}=\dfrac{x-6}{2016}+\dfrac{x-68}{1954}\)
Trừ 2 vào mỗi vế ta có:
\(\Rightarrow\dfrac{x-5}{2017}-1+\dfrac{x-2}{2020}-1=\dfrac{x-6}{2016}-1+\dfrac{x-68}{1954}-1\)
\(\Rightarrow\dfrac{x-2022}{2017}+\dfrac{x-2022}{2020}-\dfrac{x-2022}{2016}-\dfrac{x-2022}{1954}=0\)
\(\Rightarrow\left(x-2022\right)\left(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\right)=0\)
Ta thấy \(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\ne0\)
\(\Rightarrow x-2022=0\Rightarrow x=2022\)
Chúc bạn học tốt!
Câu 1:
a) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)
\(\Leftrightarrow\dfrac{12x-2\left(5x+2\right)}{12}=\dfrac{3\left(7-3x\right)}{12}\)
\(\Leftrightarrow12x-10x-4=21-9x\)
\(\Leftrightarrow11x=25\)
\(\Leftrightarrow x=\dfrac{25}{11}\)
b) \(\left(3x-1\right)\left(x-3\right)\left(7-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\Leftrightarrow x=\dfrac{1}{3}\\x-3=0\Leftrightarrow x=3\\7-2x=0\Leftrightarrow x=3,5\end{matrix}\right.\)
c) \(\left|3x\right|=4x+8\) (1)
Ta có: \(\left|3x\right|=3x\Leftrightarrow3x\ge0\Leftrightarrow x\ge0\)
\(\left|3x\right|=-3x\Leftrightarrow3x< 0\Leftrightarrow x< 0\)
Với \(x\ge0\), phương trình (1) có dạng:
\(3x=4x+8\Leftrightarrow-x=8\Leftrightarrow x=-8\)
(không thoả mãn điều kiện) \(\rightarrow\) loại
Với \(x< 0\), phương trình (1) có dạng:
\(-3x=4x+8\Leftrightarrow-7x=8\Leftrightarrow x=-\dfrac{8}{7}\)
(thoả mãn điều kiện) \(\rightarrow\) nhận
Vậy phương trình đã cho có 1 nghiệm \(x=-\dfrac{8}{7}\)
Câu 2:
\(2x\left(6x-1\right)\ge\left(3x-2\right)\left(4x+3\right)\)
\(\Leftrightarrow12x^2-2x\ge12x^2+9x-8x-6\)
\(\Leftrightarrow-3x\ge-6\)
\(\Leftrightarrow x\le2\)
Vậy bất phương trình đã cho có nghiệm \(x\le2\)
b: \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)+4=x^2+2x-3\)
\(\Leftrightarrow3x^2+8x-3-2x^2-3x+5+4=x^2+2x-3\)
\(\Leftrightarrow x^2+5x+6=x^2+2x-3\)
=>3x=-9
hay x=-3(loại)
c: \(\Leftrightarrow\left(x+5\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)-8\)
\(\Leftrightarrow x^2+2x-15=x^2-1-8=x^2-9\)
=>2x=6
hay x=3(loại)
\(\dfrac{3x-1}{2}-\left(x-\dfrac{1}{4}\right)=\dfrac{4x-9}{8}\rightarrow\dfrac{3x-1}{2}-x+\dfrac{1}{4}=\dfrac{4x-9}{8}\rightarrow\dfrac{4\left(3x-1\right)-8x+2}{8}=\dfrac{4x-9}{8}\rightarrow4\left(3x-1\right)-8x+2=4x-9\rightarrow12x-4-8x+2=4x-9\rightarrow4x-2=4x-9\)
\(\dfrac{3x-1}{2}-\left(x-\dfrac{1}{4}\right)=\dfrac{4x-9}{8}\)
\(\Leftrightarrow\dfrac{3x-1}{2}-x+\dfrac{1}{4}=\dfrac{4x-9}{8}\)
\(\Leftrightarrow\dfrac{4\left(3x-1\right)-8x+2}{8}=\dfrac{4x-9}{8}\)
\(\Leftrightarrow4\left(3x-1\right)-8x+2=4x-9\)
\(\Leftrightarrow12x-4-8x+2=4x-9\)
\(\Leftrightarrow12x-8x-4x=-9+4-2\)
\(\Leftrightarrow0x=-7\)(vô lý)
Vậy S=\(\left(\varnothing\right)\)