K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

III. Phương trình bậc nhất đối với sinx và cosx:*Giải các phương trình bậc nhất đối với sinx và cosx sau...
Đọc tiếp

III. Phương trình bậc nhất đối với sinx và cosx:

*Giải các phương trình bậc nhất đối với sinx và cosx sau đây:

(2.1)

1) \(2sinx-2cosx=\sqrt{2}\)

2) \(cosx-\sqrt{3}sinx=1\)

3) \(\sqrt{3}sin\dfrac{x}{3}+cos\dfrac{x}{2}=\sqrt{2}\)

4) \(cosx-sinx=1\)

5) \(2cosx+2sinx=\sqrt{6}\)

6) \(sin3x+\sqrt{3}cosx=\sqrt{2}\)

7) \(3sinx-2cosx=2\)

(2.3)

1) \(\left(sinx-1\right)\left(1+cosx\right)=cos^2x\)

2) \(sin\left(\dfrac{\pi}{2}+2x\right)+\sqrt{3}sin\left(\pi-2x\right)=1\)

3) \(\sqrt{2}\left(cos^4x-sin^4x\right)=cosx+sinx\)

4) \(sin2x+cos2x=\sqrt{2}sin3x\)

5) \(sinx=\sqrt{2}sin5x-cosx\)

6) \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)

7) \(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)

8) \(2sin^2x+\sqrt{3}sin2x=3\)

9) \(sin^4x+cos^4\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{4}\) 

(2.3)

1) \(\dfrac{\sqrt{3}\left(1-cos2x\right)}{2sinx}=cosx\)

2) \(cotx-tanx=\dfrac{cosx-sinx}{sinx.cosx}\)

3) \(\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}=4\)

4) \(\dfrac{1+sinx}{1+cosx}=\dfrac{1}{2}\)

5) \(3cosx+4sinx+\dfrac{6}{3cosx+4sinx+1}=6\)

(2.4)

a) Tìm nghiệm \(x\in\left(\dfrac{2\pi}{5};\dfrac{6\pi}{7}\right)\) của phương trình \(cos7x-\sqrt{3}sin7x+\sqrt{2}=0\)

b) Tìm nghiệm \(x\in\left(0;\pi\right)\) của phương trình \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+2cos^2\left(x-\dfrac{3\pi}{4}\right)\)

(2.5) Xác định tham số m để các phương trình sau đây có nghiệm:

a) \(mcosx-\left(m+1\right)sinx=m\)

b) \(\left(2m-1\right)sinx+\left(m-1\right)cosx=m-3\)

(2.6) Tìm GTLN, GTNN (nếu có) của các hàm số sau đây:

a) \(y=3sinx-4cosx+5\)

b) \(y=cos2x+sin2x-1\)

 

23
NV
30 tháng 7 2021

2.1

a.

\(\Leftrightarrow sinx-cosx=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{4}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k2\pi\\x=\dfrac{13\pi}{12}+k2\pi\end{matrix}\right.\)

NV
30 tháng 7 2021

b.

\(cosx-\sqrt{3}sinx=1\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

DD
7 tháng 7 2021

ĐK: \(cosx\ne0\Leftrightarrow x\ne\frac{\pi}{2}+k\pi,k\inℤ\).

\(1+tanx=2\left(sinx+cosx\right)\)

\(\Leftrightarrow cosx+sinx=2cosx\left(sinx+cosx\right)\)

\(\Leftrightarrow\orbr{\begin{cases}sinx+cosx=0\\cosx=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}cosx=cos\left(-x-\frac{\pi}{2}\right)\\cosx=cos\frac{\pi}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm\left(-x-\frac{\pi}{2}\right)+k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{cases}},\left(k\inℤ\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-\pi}{4}+k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{cases}},\left(k\inℤ\right)\)(thỏa mãn) 

6 tháng 7 2021

\(1+\tan x=2\left(\sin x+\cos x\right)\)

Bạn áp dụng đẳng thức lượng giác nhé : 

 \(\frac{\sin x+\cos x}{\cos x}=2\sin x+2\cos x\)

Biệt thức : 

\(D=b^2-4ac\)

\(\Leftrightarrow\left(-1\right)^2-4\left(1.1\right)=-3\)

Phương trình không có nghiệm thực : 

\(D< 0\)

Nghiệm tuần hoàn : 

\(2\pi k-\frac{\pi}{4}\)

\(2\pi k+\frac{3\pi}{4}\)

\(2\pi k+\frac{\pi}{3}\)

\(2\pi k-\frac{\pi}{3}\)

              Ps : không hiểu chỗ nào thì bạn hỏi mình nhé, nhớ k :33

                                                                                                                                              # Aeri # 

=>(cosx+sinx)-2*sinx*cosx*(sinx+cosx)=0

=>\(\left(sinx+cosx\right)\left(2\cdot sinx\cdot cosx-1\right)=0\)

=>\(\sqrt{2}\cdot sin\left(x+\dfrac{pi}{4}\right)\cdot\left(sin2x-1\right)=0\)

=>\(\left[{}\begin{matrix}sin\left(x+\dfrac{pi}{4}\right)=0\\sin2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{pi}{4}=kpi\\sin2x=1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=kpi-\dfrac{pi}{4}\\2x=\dfrac{pi}{2}+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=kpi-\dfrac{pi}{4}\\x=\dfrac{pi}{4}+kpi\end{matrix}\right.\)

5 tháng 9 2021

1.

\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)

\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

5 tháng 9 2021

2.

\(\left|cosx-sinx\right|+2sin2x=1\)

\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)

\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)

\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)

NV
17 tháng 7 2021

\(\Leftrightarrow2\left(\dfrac{1}{2}cosx+\dfrac{\sqrt{3}}{2}sinx\right)+2cos\left(x-\dfrac{\pi}{3}\right)=2\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)+cos\left(x-\dfrac{\pi}{3}\right)=1\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\pi}{3}+k2\pi\\x=k2\pi\end{matrix}\right.\)

22 tháng 10 2019

1   +   sin x   -   cos x   -   sin 2 x   +   2 cos 2 x   =   0   ( 1 )     T a   c ó :     1   -   sin 2 x   =   sin x   -   cos x 2     ⇔   2 cos 2 x   =   2 ( cos 2 x   -   sin 2 x )   =   - 2 ( sin x   -   cos x ) ( sin x   +   cos x )     V ậ y   ( 1 )   ⇔   ( sin x   -   cos x ) ( 1   +   sin x   -   cos x   -   2 sin x   -   2 cos x )   =   0     ⇔   ( sin x   -   cos x ) ( 1   -   sin x   -   3 cos x )   =   0

Giải sách bài tập Toán 11 | Giải sbt Toán 11

NV
1 tháng 8 2021

ĐKXĐ: ...

\(sin3x-cos3x+sinx+cosx=\dfrac{sin3x-cos3x+sinx+cosx}{\left(sin3x+cosx\right)\left(cos3x-sinx\right)}\)

\(\Rightarrow\left[{}\begin{matrix}sin3x-cos3x+sinx+cosx=0\left(1\right)\\\left(sin3x+cosx\right)\left(cos3x-sinx\right)=1\left(2\right)\end{matrix}\right.\)

(1) \(\Leftrightarrow3sinx-4sin^3x-4cos^3x+3cosx+sinx+cosx=0\)

\(\Leftrightarrow sinx+cosx+sin^3x+cos^3x=0\)

\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)\left(1-sinx.cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2-sinx.cosx\right)=0\)

\(\Leftrightarrow sinx+cosx=0\) (loại)

(2) \(\Leftrightarrow sin3x.cos3x-sinx.cosx-sin3x.sinx+cos3x.cosx=1\)

\(\Leftrightarrow\dfrac{1}{2}sin6x-\dfrac{1}{2}sin2x+cos4x=1\)

\(\Leftrightarrow\dfrac{1}{2}\left(3sin2x-4sin^32x\right)-\dfrac{1}{2}sin2x+1-2sin^22x=1\)

\(\Leftrightarrow sin2x-2sin^32x-2sin^22x=0\)

\(\Leftrightarrow-sin2x\left(2sin^22x+2sin2x-1\right)=0\)

\(\Leftrightarrow...\)