K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NB
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
RM
0
JG
0
RM
0
JG
3
7 tháng 5 2020
\(4x^4+4x^3+x^2+3x\ge0\)
\(4x^4+4x^2+1-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)
\(\Leftrightarrow\left(2x^2+1\right)^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)
\(2x^2+1=u;\sqrt{4x^4+4x^3+x^2+3x}=v\left(u>0;v>0\right)\)
\(\hept{\begin{cases}u^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)v\\v^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)u\end{cases}\Rightarrow u^2-v^2=\left(x^2-x+1\right)\left(v-u\right)\Leftrightarrow\orbr{\begin{cases}u=v\\u+v+x^2-x+1=0\end{cases}}}\)
- \(u+v+x^2-x+1=0\Leftrightarrow u+v+\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
- \(u=v\Leftrightarrow4x^4+4x^2+1=4x^4+4x^3+x^2+3x\Leftrightarrow\left(x-1\right)^3=-3x^3\Leftrightarrow x-1=-x\sqrt[3]{3}\Leftrightarrow x=\frac{1}{1+\sqrt[3]{3}}\)Đối chiếu điều kiện ta thu được nghiệm duy nhất \(x=\frac{1}{1+\sqrt[3]{3}}\)
x^4 + 4x^3+ 6x^2+ 4x = y^2
Hướng dẫn: Ta có: x^4 + 4x^3+ 6x^2+ 4x = y^2
⇔ x^4 +4x^3+6x^2+4x +1- y^2=1
⇔ (x+1)^4 – y^2 = 1
⇔ [(x+1)^2 –y] [(x+1)^2+y]= 1
\(\Leftrightarrow\) \(\hept{\begin{cases}\left(x+1\right)^2-y=1\\\left(x+1\right)^2+y=1\end{cases}}\) hoặc \(\hept{\begin{cases}\left(x+1\right)^2-y=-1\\\left(x+1\right)^2+y=-1\end{cases}}\)
\(\orbr{\begin{cases}1-y=1+y\\-1-y=-1+y\end{cases}}\)
⇒ y = 0 ⇒ (x+1)^2 = 1
⇔ x+1 = ±1 ⇒ x = 0 hoặc x = -2
Vậy ( x, y ) = ( 0, 0 ); ( – 2, 0 )
Chúc bạn hk tốt!!!