K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 5 2020

a/ \(f'\left(x\right)=2sinx.cosx-2sinx=0\)

\(\Leftrightarrow2sinx\left(cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=1\end{matrix}\right.\) \(\Rightarrow x=k\pi\)

b/ \(f'\left(x\right)=cosx+sin4x+sin6x=0\)

\(\Leftrightarrow cosx+2sin5x.cosx=0\)

\(\Leftrightarrow cosx\left(2sin5x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\sin5x=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\5x=-\frac{\pi}{6}+k2\pi\\5x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=-\frac{\pi}{30}+\frac{k2\pi}{5}\\x=-\frac{7\pi}{30}+\frac{k2\pi}{5}\end{matrix}\right.\)

20 tháng 5 2020

Mình cảm ơn bạn, bạn có thể giúp mình làm thêm một số bài nữa được không ạ?

NV
12 tháng 10 2020

a.

\(1-sin^2x+1-2sin^2x+sinx+2=0\)

\(\Leftrightarrow-3sin^2x+sinx+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{4}{3}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)

b. ĐKXĐ; ...

\(5tanx-\frac{2}{tanx}-3=0\)

\(\Leftrightarrow5tan^2x-3tanx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{2}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{2}{5}\right)+k\pi\end{matrix}\right.\)

NV
12 tháng 10 2020

e.

Ko rõ vế phải

f.

\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)

\(\Leftrightarrow1-2sin^22x=0\)

\(\Leftrightarrow cos4x=0\)

\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)

NV
29 tháng 10 2020

1d.

Đề ko rõ

1e.

\(\Leftrightarrow\left(4cos^3x-3cosx\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(4cos^2x-3\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(2cos2x-1\right)^2cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left[\left(2cos2x-1\right)^2.cos2x-1\right]=0\)

\(\Leftrightarrow cos^2x\left(4cos^32x-4cos^22x+cos2x-1\right)=0\)

\(\Leftrightarrow cos^2x\left(cos2x-1\right)\left(4cos^22x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
29 tháng 10 2020

2b.

Đề thiếu

2c.

Nhận thấy \(cos2x=0\) ko phải nghiệm, chia 2 vế cho \(cos^32x\)

\(\frac{8sin^22x}{cos^22x}=\frac{\sqrt{3}sin2x}{cos2x}.\frac{1}{cos^22x}+\frac{1}{cos^22x}\)

\(\Leftrightarrow8tan^22x=\sqrt{3}tan2x\left(1+tan^22x\right)+1+tan^22x\)

\(\Leftrightarrow\sqrt{3}tan^32x-7tan^22x+\sqrt{3}tan2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1}{\sqrt{3}}\\tanx=\sqrt{3}-2\\tanx=\sqrt{3}+2\end{matrix}\right.\)

\(\Leftrightarrow...\)

19 tháng 9 2016

a, ta có 2x + π/3 = 3π/4 +k2π hoặc 2x + π/3 = -3π/4 + k2π

=> x= 5π/24 + kπ hoặc x= -13π/24 +kπ

b, đề sai phải ko

c,  cos22x - sin22x - 2sinx -1=0

<=> -2sin22x -2sin2x =0

<=> sin2x=0 hoặc sin2x=-1

<=> x=kπ hoặc x= π/2 + kπ ; x=-π/4 +kπ hoặc x=5π/8 + kπ

d, cos5xcosπ/4 - sin5xsinπ/4 = -1/2

   cos( 5x + π/4 ) = -1/2

   <=> x=π/12 +k2π/5 hoặc x= -11π/60 + k2π/5

f,4x+π/3=3π/10 -x +k2π  hoặc 4x+π/3 = x - 3π/10 +k2π

<=> x =-π/150 + k2π/5 hoặc x = π/90 +k2π/3

NV
1 tháng 10 2020

a.

\(cos\left(3x-\frac{\pi}{6}\right)=sin\left(2x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow cos\left(3x-\frac{\pi}{6}\right)=cos\left(\frac{\pi}{6}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=\frac{\pi}{6}-2x+k2\pi\\3x-\frac{\pi}{6}=2x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

b.

ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\cos3x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cos2x\ne\frac{1}{2}\end{matrix}\right.\)

\(tan3x-tanx=0\)

\(\Leftrightarrow\frac{sin3x}{cos3x}-\frac{sinx}{cosx}=0\)

\(\Leftrightarrow sin3x.cosx-cos3x.sinx=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow2sinx.cosx=0\)

\(\Leftrightarrow sinx=0\Leftrightarrow x=k\pi\)

NV
1 tháng 10 2020

c.

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{2\pi}{5}\right)=\frac{1}{2}-\frac{1}{2}cos\left(4x+\frac{8\pi}{5}\right)\)

\(\Leftrightarrow cos\left(2x-\frac{2\pi}{5}\right)=-cos\left(4x+\frac{3\pi}{5}+\pi\right)\)

\(\Leftrightarrow cos\left(2x-\frac{2\pi}{5}\right)=cos\left(4x+\frac{3\pi}{5}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{3\pi}{5}=2x-\frac{2\pi}{5}+k2\pi\\4x+\frac{3\pi}{5}=\frac{2\pi}{5}-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

d.

\(\Leftrightarrow cos^2\left(2x-1\right)=0\)

\(\Leftrightarrow cos\left(2x-1\right)=0\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{1}{2}+\frac{k\pi}{2}\)

12 tháng 10 2020

@Nguyễn Việt Lâm giúp em với ạ

13 tháng 10 2020

@Nguyễn Việt Lâm

NV
18 tháng 3 2019

1/ \(y'=\frac{\sqrt{9-x^2}-x\left(\sqrt{9-x^2}\right)'}{9-x^2}=\frac{\sqrt{9-x^2}+\frac{x^2}{\sqrt{9-x^2}}}{9-x^2}=\frac{9}{\left(9-x^2\right)\sqrt{9-x^2}}\)

2/ \(y'=\frac{\left(\sqrt{x^2+x+3}\right)'.\left(2x+1\right)-2\sqrt{x^2+x+3}}{\left(2x+1\right)^2}=\frac{\frac{\left(2x+1\right)}{2\sqrt{x^2+x+3}}.\left(2x+1\right)-2\sqrt{x^2+x+3}}{\left(2x+1\right)^2}\)

\(=\frac{\left(2x+1\right)^2-4\left(x^2+x+3\right)}{2\left(2x+1\right)^2\sqrt{x^2+x+3}}=\frac{-11}{2\left(2x+1\right)^2\sqrt{x^2+x+3}}\)

3/ \(y'=3\left(1+tan^23x\right)=3+3tan^23x\)

4/ \(y'=\frac{\left(cosx-sinx\right)\left(sinx-cosx\right)-\left(cosx+sinx\right)\left(sinx+cosx\right)}{\left(sinx-cosx\right)^2}\)

\(=-\frac{\left(sinx-cosx\right)^2+\left(sinx+cosx\right)^2}{\left(sinx-cosx\right)^2}=-\frac{sin^2x+cos^2x-2sinxcosx+sin^2x+cos^2x+2sinxcosx}{sin^2x+cos^2x-2sinxcosx}\)

\(=\frac{-2}{1-sin2x}\)

5/ \(y'=4x+\frac{1}{2\sqrt{x}}-\frac{\pi}{2}cos\left(\frac{\pi x}{2}\right)\)

6/ \(y'=3sin^2\left(1-3x\right).\left(sin\left(1-3x\right)\right)'=3sin^2\left(1-3x\right).cos\left(1-3x\right).\left(1-3x\right)'\)

\(=-9sin^2\left(1-3x\right).cos\left(1-3x\right)\)