K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt a=4x-19; b=4x-20

=>a^4+b^4=(a+b)^4

=>4a^3b+6a^2b^2+4ab^2=0

=>ab(4a^2+6ab+4b)=0

=>(4x-19)(4x-20)=0

=>x=19/4 hoặc x=20/4=5

8 tháng 3 2017

X= 10000000

8 tháng 3 2017

Ghi lời giải giùm mình được không?

21 tháng 2 2016

Đặt x làm thừa số chung là ra đó bạn

21 tháng 2 2016

phương trình đa thức đối xứng

13 tháng 3 2018

a) \(\Leftrightarrow x^4-4x-1=0\)

\(\Leftrightarrow x^4+2x^2+1-2x^2-4x-2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-2\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2=2\left(x+1\right)^2\)

\(\Leftrightarrow x^2+1=\sqrt{2}\left(x+1\right)\)

\(\Leftrightarrow x^2-\sqrt{2}x-\sqrt{2}+1=0\)

Tự giải pt bậc 2 nhak :))))

\(a,-x^3+x^2+4=0\)

\(-\left(x^3-x^2-4\right)=0\)

\(x^3-2x^2+x^2+2x-2x-4=0\)

\(x^2\left(x-2\right)+x\left(x+2\right)-2\left(x+2\right)=0\)

\(x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)=0\)

\(\left(x-2\right)\left(x^2+x+2\right)=0\)

Vì \(x^2+x+2>0\left(\forall x\right)\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

23 tháng 6 2019

\(2x^2+2xy+y^2=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2=0\)

\(\Leftrightarrow\left(x+y\right)^2+x^2=0\)

\(\Leftrightarrow x=y=0\)

31 tháng 1 2016

\(x^4-4x^3+3x^2+4x-4=0\)

\(\Leftrightarrow\)  \(x^4-4x^3+4x^2-x^2+4x-4=0\)

\(\Leftrightarrow\)  \(x^2\left(x^2-4x+4\right)-\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\)  \(x^2\left(x-2\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\)  \(\left(x-2\right)^2\left(x^2-1\right)=0\)

\(\Leftrightarrow\)  \(^{\left(x-2\right)^2=0}_{x^2-1=0}\)  \(\Leftrightarrow\)  \(^{x-2=0}_{x^2=1}\)  \(\Leftrightarrow\)  \(^{x=2}_{x=^+_-1}\)

Vậy,   \(S=\left\{-1;1;2\right\}\)

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }

29 tháng 1 2020

a) \(x^4-4x^3+12x-9=0\)

\(\Leftrightarrow x^4-x^3-3x^3+3x^2-3x^2+3x+9x-9=0\)

\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-3x+9\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-3\right)\left(x-3\right)=0\)

\(\Leftrightarrow x-1=0\)hoặc \(x^2-3=0\)hoặc \(x-3=0\)

\(\Leftrightarrow x=1\)hoặc \(x=\pm\sqrt{3}\)hoặc \(x=3\)

Vậy tập nghiệm của phương trình là : \(S=\left\{1;\pm\sqrt{3};3\right\}\)

b) \(x^5-5x^3+4x=0\)

\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)

\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^3-4x\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=0\)hoặc \(x=\pm2\)hoặc \(x=\pm1\)

Vậy tập nghiệm của phương trình là : \(S=\left\{0;\pm2;\pm1\right\}\)

c) \(x^4-4x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^4-x^3-3x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4=0\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-x^2+4=0\right)\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow x-1=0\)

hoặc \(x^2+x+2=\left(x+\frac{1}{2}^2\right)+\frac{7}{4}=0\left(ktm\right)\)

hoặc \(x-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;2\right\}\)