K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

Hệ phương trình đã cho tương đương với:

\(\hept{\begin{cases}x^3-y^3=2\left(4x+y\right)\\x^2-3y^2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}3x^3-3y^3=6\left(4x+y\right)\left(1\right)\\x^2-2y^2=6\left(2\right)\end{cases}}\)

Thay (2) và (1), ta được: \(3x^3-3y^3=\left(x^2-2y^2\right)\left(4x+y\right)\Leftrightarrow x^3+x^2y-12xy^2=0\)(*)

- Xét x = 0 thì ta dễ thấy không thỏa mãn

- Xét \(x\ne0\)ta chia cả hai vế của phương trình (*) cho x3, ta được\(1+\left(\frac{y}{x}\right)-12\left(\frac{y}{x}\right)^2=0\)

Đặt \(\frac{y}{x}=s\), ta được: \(-12s^2+s+1=0\Leftrightarrow\left(1-3s\right)\left(4s+1\right)=0\Leftrightarrow\orbr{\begin{cases}s=\frac{1}{3}\\s=-\frac{1}{4}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3y\\x=-4y\end{cases}}\)

Với x = 3y thay vào (2), ta được: \(9y^2-3y^2=6\Leftrightarrow6y^2=6\Leftrightarrow y=\pm1\Rightarrow x=\pm3\)

Với x = -4y thay vào (2) ta được:\(16y^2-3y^2=6\Leftrightarrow13y^2=6\Leftrightarrow y=\pm\sqrt{\frac{6}{13}}\Rightarrow x=\mp\sqrt{\frac{96}{13}}\)

Vậy tập nghiệm của hệ phương trình là \(\left\{\left(1;3\right);\left(-1;-3\right);\left(\sqrt{\frac{6}{13}};-\sqrt{\frac{96}{13}}\right);\left(-\sqrt{\frac{3}{16}};\sqrt{\frac{96}{13}}\right)\right\}\)

18 tháng 8 2020

Để ý rằng nếu nhân chéo 2 phương trình của hệ ta có

\(6\left(x^3+y^3\right)=\left(8x+2y\right)\left(x^2+3y^2\right)\) đây là hệ phương trình đẳng cấp bậc 3, Từ đó ta giải như sau

Vì x=0 không là nghiệm của hệ nên ta đặt y=tx khi đó hệ trở thành

\(\hept{\begin{cases}x^3-8x=t^3x^3+2tx\\x^2-3=3\left(t^2x^2+1\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x^2\left(1-t^3\right)=2t+8\\x^2\left(1-3t^2\right)=6\end{cases}}\Rightarrow\frac{1-t^3}{1-3t^2}=\frac{t+4}{3}}\)

\(\Leftrightarrow3\left(1-t^3\right)=\left(t+4\right)\left(1-3t^2\right)\Leftrightarrow12t^2-t-1=0\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{3}\\t=-\frac{1}{4}\end{cases}}\)

\(t=\frac{1}{3}\Rightarrow\hept{\begin{cases}x^2\left(1-3t^2\right)=6\\y=\frac{x}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm3\\y=\pm1\end{cases}}}\)

*\(t=-\frac{1}{4}\Rightarrow\hept{\begin{cases}x=\pm\frac{4\sqrt{78}}{13}\\y=\mp\frac{\sqrt{78}}{13}\end{cases}}\)

Vậy hệ phương trình có các cặp nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(-3;-1\right);\left(\frac{4\sqrt{78}}{13};\frac{\sqrt{78}}{13}\right);\left(-\frac{4\sqrt{78}}{13};-\frac{\sqrt{78}}{13}\right)\right\}\)

3 tháng 3 2019

1) Cộng vế theo vế ta được

\(2x^2+3xy+y^2-7x-5y+6=0\)

\((x+y-2)(2x+y-3)=0\)

Thay vào phương trình giải bình thường

2) Nhận thấy \(y=0\)không là nghiệm của hpt trên.Vì thế nhân cả 2 vế của (2) cho 18y ta được:\(72x^2y^{2}+108xy=18y^3\) (3)
Lấy (1) trừ (3) ta được:\(8x^3y^3-72x^2y^{2}-108xy+27=0 \)
Đến đây đặt \(a=xy\) giải bình thường

27 tháng 12 2019

bạn có cách nào để phân tích đa tử nhanh như ở câu a k ạ

3 tháng 12 2019

Akai Harumatth

3 tháng 12 2019

làm sao tag tên của tth vậy bạn

a: x-2y=5 và 3x+y=8

=>3x-6y=15 và 3x+y=8

=>-7y=7 và x-2y=5

=>y=-1 và x=5+2y=5-2=3

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x+1}+\dfrac{6}{y-2}=9\\\dfrac{3}{x+1}-\dfrac{1}{y-2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{y-2}=7\\\dfrac{1}{x+1}+\dfrac{2}{y-2}=3\end{matrix}\right.\)

=>y-2=1 và x+1=1

=>x=0 và y=3

25 tháng 11 2018

\(\hept{\begin{cases}x^3+y^3=1\\2y^3+x^2y+3xy^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}3x^3+3y^3=3\\2y^3+x^2y+3xy^2=3\end{cases}}}\)

\(\Rightarrow3x^3-x^2y-3xy^2+y^3=0\)

\(\Leftrightarrow x^2\left(3x-y\right)-y^2\left(3x-y\right)=0\)

\(\Leftrightarrow\left(3x-y\right)\left(x-y\right)\left(x+y\right)=0\)

đến đây biểu diễn y thae x rồi thay vào 1 trong 2 pt là ra