Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{\begin{matrix}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}x+y+xy=7\\x^2+y^2+x+y+xy=17\end{matrix}\right.\)
Đặt \(\left\{\begin{matrix}xy=P\\x+y=S\end{matrix}\right.\) thì
\(\Rightarrow\left\{\begin{matrix}S+P=7\\S^2+S-P=17\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}P=7-S\\S^2+S-\left(7-S\right)=17\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}P=7-S\\S^2+2S=24\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}\left\{\begin{matrix}S=-6\\P=13\end{matrix}\right.\\\left\{\begin{matrix}S=4\\P=3\end{matrix}\right.\end{matrix}\right.\)
Giờ chỉ cần thế ngược lại là tìm được x, y
HPT \(\Leftrightarrow\left\{\begin{matrix}xy+x+y+1=8\\x^2+x+y^2+y+xy=17\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}xy+x+y=7\\x^2+y^2=10\end{matrix}\right.\)
from x2+y2=10 <=> .....bla bla bla.........
vậy.......... x=......
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)
Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)
Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new
e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ
thanks nhiều!
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
(1)<=>x^2+y^2+(x+y)=8
<=>(x+y)^2+(x+y)=2xy+8
(2x+2y+1)^2=8xy+33(a)
(2)<=>(2x+2y+1)=-2xy+11(b)
(a)+4(b);
(2x+2y+1)^2+4(2x+2y+1)=77
<=>(2x+2y+3)^2=81
|2x+2y+3|=9
x+y={-6;3}=>xy={11;2}
z^2+6z+11=0; ∆1: =9-11<0 vn
z^2-3z+2=0(a+b+c=0)
z{1,2}
(x,y)=(1,2);(2,1)
Lời giải:
Ta có: \(\left\{\begin{matrix} x(x+1)+y(y+1)=8\\ x+y+xy=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} (x+y)^2-2xy+x+y=8\\ xy=5-(x+y)\end{matrix}\right.\)
\(\Leftrightarrow (x+y)^2-2[5-(x+y)]+x+y=8\)
\(\Leftrightarrow (x+y)^2+3(x+y)-18=0\)
\(\Leftrightarrow (x+y-3)(x+y+6)=0\)
\(\Leftrightarrow \left[\begin{matrix} x+y=3\rightarrow xy=2(1)\\ x+y=-6\rightarrow xy=11(2)\end{matrix}\right.\)
Với (1), theo định lý Viete đảo thì $x,y$ là nghiệm của pt: \(x^2-3x+2=0\Leftrightarrow (x,y)=(1,2)\) và hoán vị
Với (2) , theo định lý Viete đảo thì $x,y$ là nghiệm của pt \(x^2+6x+11=0\), pt này vô nghiệm nên không tồn tại $x,y$
Vậy $(x,y)=(1,2)$ và hoán vị