K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2016

pt(1)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\3x^2+\left(6+y^2\right)x+2y^2=0\left(1'\right)\end{array}\right.\)

*)x=0.Thay vào pt(2) ta đc:y\(^2\)=-3(VN)

*)(1')\(\Leftrightarrow\left(x+2\right)\left(y^2+3x\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\y^2=-3x\end{array}\right.\)

TH1:x=-2\(\Rightarrow y^2\)=-5(VN)

TH2:y\(^2\)=-3x.(x\(\le0\)).Thay vào pt(2) ta đc:\(^2\)x\(^2\)

\(\Rightarrow\)x=3(L) hoặc x=1(L)

Vậy hệ pt vô nghiệm

13 tháng 4 2017

\(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{2x+y+1}+2\sqrt[3]{7x+12y+8}=2xy+y+5\end{matrix}\right.\)

Xét \(pt\left(1\right)\) dễ dàng suy ra \(x+y\ge0\)

\(VT=\sqrt{\left(x-y\right)^2+\left(2x+y\right)^2}+\sqrt{\left(x-y\right)^2+\left(2y+x\right)^2}\)

\(\ge\left|2x+y\right|+\left|2y+x\right|\ge3\left(x+y\right)\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=y\\x,y\ge0\end{matrix}\right.\)

Thay vào \(pt\left(2\right)\) ta được:

\(\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5\)

\(\Leftrightarrow\left[\sqrt{3x+1}-\left(x+1\right)\right]+2\left[\sqrt[3]{19x+8}-\left(x+2\right)\right]=2x^2-2x\)

\(\Leftrightarrow\left(x-x^2\right)\left[\dfrac{1}{\sqrt{3x+1}+x+1}+2\cdot\dfrac{x+7}{\sqrt[3]{\left(19x+8\right)^2}+\left(x+2\right)\sqrt[3]{19x+8}+\left(x+2\right)^2}+2\right]=0\)

Do \(x;y\ge0\) nên pt trong ngoặc luôn dương

\(\Rightarrow x-x^2=0\Rightarrow x\left(1-x\right)=0\Rightarrow\)\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(x=y\)\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\) là nghiệm của hpt

14 tháng 4 2017

thanks b đã chỉ giúp mình.tại đánh máy nên mình ko để ý^^

Bài 1: 

\(\Leftrightarrow\left(x^2-6x-7\right)^2-\left(3x^2-12x-9\right)^2=0\)

\(\Leftrightarrow\left(3x^2-12x-9-x^2+6x+7\right)\left(3x^2-12x-9+x^2-6x-7\right)=0\)

\(\Leftrightarrow\left(2x^2-6x-2\right)\left(4x^2-18x-16\right)=0\)

\(\Leftrightarrow\left(x^2-3x-1\right)\left(2x^2-9x-8\right)=0\)

hay \(x\in\left\{\dfrac{3+\sqrt{13}}{2};\dfrac{3-\sqrt{13}}{2};\dfrac{9+\sqrt{145}}{4};\dfrac{9-\sqrt{145}}{4}\right\}\)

31 tháng 3 2019

câu 1 ta dùng liên hợp nha bạn

điều kiện \(x\ge-1\)

\(\sqrt{x+1}-1+\sqrt[3]{x^2+1}-1=0\\ \Leftrightarrow\frac{x}{\sqrt{x+1}+1}+\frac{x^2}{\sqrt[3]{x+1}^2+\sqrt[3]{x+1}+1}=0\)

suy ra là \(\left[{}\begin{matrix}x=0\left(n\right)\\\frac{1}{\sqrt{x+1}+1}+\frac{x}{\sqrt[3]{x+1}^2+\sqrt[3]{x+1}+1}=0\left(1\right)\end{matrix}\right.\)

theo mình nghĩ (1) vô nghiệm

vậy x=0 là nghiệm pt