\(\hept{\begin{cases}x^2y+2y+x=4xy\\\frac{1}{x^2}+\frac{1}{xy}+\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2020

đkxđ: \(x,y\ne0\)

Biến đổi hệ thành:

\(\hept{\begin{cases}x+\frac{2}{x}+\frac{1}{y}=4\\\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(\frac{1}{x}+\frac{1}{y}\right)=4\\\frac{1}{x}\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{x}{y}+\frac{x}{x}\right)=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(\frac{1}{x}+\frac{1}{y}\right)=4\\\left(x+\frac{1}{x}\right)\left(\frac{1}{x}+\frac{1}{y}\right)=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x+\frac{1}{x}=2\\\frac{1}{x}+\frac{1}{y}=2\end{cases}}\Leftrightarrow x=y=1\)

Vậy hệ đã cho có nghiệm (x;y)=(1;1)

20 tháng 8 2019

chịu thua

20 tháng 8 2019

giải ko ra hay sao ạ