\(\left\{{}\begin{matrix}5x^2+3x\sqrt{x^2-y}=3y+8\\\left(4x-2\right)\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

a,\(\left\{{}\begin{matrix}-x+2y=6\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x+6y=18\left(1\right)\\10x-6y=10\left(2\right)\end{matrix}\right.\)
Cộng (1) và (2) => 7x=28
\(\Leftrightarrow\) x=4
thay x vào (1) ta có -4+2y=6
=> 2y=10
=>y=5
Vậy nghiệm của phương trình (x;y)=(4;5)

10 tháng 12 2022

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{3}x+\dfrac{1}{4}y=2\\5x-y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\5y=15\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

Giải hệ phương trình: 1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\) 2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\) 3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\) 4....
Đọc tiếp

Giải hệ phương trình:

1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)

3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)

4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)

5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)

6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)

0
31 tháng 10 2019

1/PT (1) cho ta nhân tử x - y - 1:)

\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)

ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)

PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)

Dễ thấy cái ngoặc to < 0

Do đó x= y + 1

Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)

ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)

PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)

\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)

Cái ngoặc to > 0 =>...

P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(

31 tháng 10 2019

2/ĐK: \(x\ge-y;y\ge0\)

PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)

Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).

Do đó x = y \(\ge0\)

Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)

Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)

Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)

P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Coi PT thứ nhất là PT(1) và PT thứ 2 là PT(2)

a)

Từ PT$(2)\Rightarrow y=18-5x$

Thế vào PT$(1)$: $3x-2(18-5x)=5$

$\Leftrightarrow 13x=41\Leftrightarrow x=\frac{41}{13}$

\(y=18-5x=18-5.\frac{41}{13}=\frac{29}{13}\)

Vậy.......

b)

PT\((1)\Rightarrow y=2x-8\)

Thế vào $PT(2)\Rightarrow$ \(x+3(2x-8)=10\)

$\Leftrightarrow 7x=34\Rightarrow x=\frac{34}{7}$

$y=2x-8=2.\frac{34}{7}-8=\frac{12}{7}$

Vậy........

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

c)

HPT \(\Leftrightarrow \left\{\begin{matrix} 12x-9y=6\\ 12x-16y=-8\end{matrix}\right.\)

Từ PT$(1)\Rightarrow 12x=9y+6$

Thế vào PT$(2)\Rightarrow 9y+6-16y=-8$

$\Leftrightarrow y=2$

$x=\frac{9y+6}{12}=\frac{9.2+6}{12}=2$

Vậy.........

d)

HPT \(\Leftrightarrow \left\{\begin{matrix} 10x+25y=65\\ 10x-6y=-28\end{matrix}\right.\)

Từ PT$(1)\Rightarrow 10x=65-25y$

Thế vào PT$(2)\Rightarrow 65-25y-6y=-28$

$\Leftrightarrow y=3$

$x=\frac{65-25y}{10}=\frac{65-25.3}{10}=-1$

Vậy........

4 tháng 2 2020

a)

\(\left\{{}\begin{matrix}\left(\sqrt{2}+1\right)x+y=\sqrt{2}-1\\2x-\left(\sqrt{2}-1\right)y=2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\\2x-\left(\sqrt{2}-1\right)y=2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\\2x-\left(\sqrt{2}-1\right)\left(\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\right)=2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\\x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right).1\\x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy hệ phương trình có tập nghiệm {1;-2}

b)

\(\left\{{}\begin{matrix}\sqrt{3}x-y=1\\5x+\sqrt{2}y=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}x-1\\5x+\sqrt{2}y=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}x-1\\5x+\sqrt{2}\left(\sqrt{3}x-1\right)=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}x-1\\x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}.\left(\frac{3\sqrt{3}+2\sqrt{2}}{19}\right)-1\\x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{-10+2\sqrt{6}}{19}\\x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\\y=\frac{-10+2\sqrt{6}}{19}\end{matrix}\right.\)

Vậy hệ phương trình có tập nghiệm \(\left\{\frac{3\sqrt{3}+2\sqrt{2}}{19};\frac{-10+2\sqrt{6}}{19}\right\}\)

c)

\(\left\{{}\begin{matrix}2x+y=5\\3x-2y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=10\\3x-2y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=13\\4x+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{13}{7}\\4.\frac{13}{7}+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{13}{7}\\y=\frac{9}{7}\end{matrix}\right.\)

Vậy hệ phương trình có tập nghiệm \(\left\{\frac{13}{7};\frac{9}{7}\right\}\)

Cô giỏi Toán quá !