\(\left\{{}\begin{matrix}3x^2+y^2=5\\x^2-3y^2=1\end{matrix}\right.\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 11 2022

\(\left\{{}\begin{matrix}3x^2+y^2=5\\x^2-3y^2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3\left(3y^2+1\right)+y^2=5\\x^2=3y^2+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10y^2=2\\x^2=3y^2+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y^2=\dfrac{1}{5}\\x^2=\dfrac{8}{5}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{1}{\sqrt{5}}\\y=\pm\dfrac{2\sqrt{10}}{5}\end{matrix}\right.\)

11 tháng 2 2017

a) Từ đề bài => (x2+1)-(y2+1)=3y-3x

<=> (x-y)(x+y)+3(x-y)=0

<=> (x-y)(x+y+3)=0

<=> x-y=0 hoặc x+y+3=0

<=> x=y hoặc x=-y-3

Nếu x=-y-3, thế vào pt x2+1=3y ta được

(-y-3)2+1=3y

<=> y2+9+6y+1-3y=0

<=> y2+3y+10=0

<=> (y+3/2)2+31/4=0, vô nghiệm

Vậy ...

11 tháng 2 2017

b) Từ x+y=4 => (x+y)2=16

<=> x2+y2+2xy=16

Lại có: x2+y2=10

Trừ theo vế ta được: 2xy=6

<=> xy=3 => x=3/y (*)

Thế vào x+y=4 ta được:3/y + y = 4

<=> 3+y2=4y

<=> 3+y2-4y=0

<=> (y-1)(y-3)=0

<=> y=1 hoặc y=3

+) y=1, từ (*) => x=3

+) y=3, từ (*) => x=1

Vậy ...

AH
Akai Haruma
Giáo viên
3 tháng 1 2020

Bài 1:

Lấy PT $(1)$ trừ PT $(2)$ ta có:

\(x^2-y^2=3y-3x\)

\(\Leftrightarrow (x-y)(x+y)+3(x-y)=0\Leftrightarrow (x-y)(x+y+3)=0\)

$\Rightarrow x-y=0$ hoặc $x+y+3=0$

Nếu $x-y=0\Leftrightarrow x=y$. Thay vào PT $(1)$:

\(x^2=3x-2\Leftrightarrow x^2-3x+2=0\Leftrightarrow (x-1)(x-2)=0\)

$\Rightarrow x=1$ hoặc $x=2$

Tương ứng ta thu được $y=1$ hoặc $y=2$

Nếu $x+y+3=0\Leftrightarrow y=-(x+3)$. Thay vào PT $(1)$:

\(x^2=-3(x+3)-2\Leftrightarrow x^2=-3x-11\Leftrightarrow x^2+3x+11=0\)

\(\Leftrightarrow (x+\frac{3}{2})^2=\frac{-35}{4}< 0\) (vô lý)

Vậy..........

AH
Akai Haruma
Giáo viên
3 tháng 1 2020

Bài 2:

Lấy PT(1) trừ PT(2) ta có:

\(2x-2y+\frac{1}{y}-\frac{1}{x}=\frac{3}{x}-\frac{3}{y}\)

\(\Leftrightarrow 2(x-y)+(\frac{4}{y}-\frac{4}{x})=0\)

\(\Leftrightarrow (x-y)+\frac{2(x-y)}{xy}=0\)

\(\Leftrightarrow (x-y).\frac{2+xy}{xy}=0\Rightarrow \left[\begin{matrix} x=y\\ xy=-2\end{matrix}\right.\)

Nếu $x=y$. Thay vào PT (1) có:

\(2x+\frac{1}{x}=\frac{3}{x}\Leftrightarrow 2x-\frac{2}{x}=0\Leftrightarrow x^2-1=0\)

\(\Rightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 1\) (tương ứng)

Nếu $xy=-2\Rightarrow \frac{1}{y}=\frac{-x}{2}$

Thay vào PT(1): $2x-\frac{x}{2}=\frac{3}{x}$

$\Leftrightarrow x^2=2\Rightarrow x=\pm \sqrt{2}$

$\Rightarrow y=\mp \sqrt{2}$

Vậy........

NV
10 tháng 7 2019

a/ Bạn tự giải

b/ ĐKXĐ:...

Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)

Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)

\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)

\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)

Chắc bạn ghi sai đề, nghiệm quá xấu

3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)

4/ ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)

\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)

\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)

21 tháng 3 2020

1) \(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2-4x\\8x+3\left(2-4x\right)=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{4}\\y=1\end{matrix}\right.\)

2) 2 pt 3 ẩn không giải được.

3) \(\left\{{}\begin{matrix}3x+2y=6\\x-y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=x-2\\3x+2\left(x-2\right)=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

4) \(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+1}{2}\\-4\cdot\frac{3y+1}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)

5) \(\left\{{}\begin{matrix}2x+3y=5\\5x-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-3y+5}{2}\\5\cdot\frac{-3y+5}{2}-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

6) \(\left\{{}\begin{matrix}3x-y=7\\x+2y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3x-7\\x+2\left(3x-7\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

7) \(\left\{{}\begin{matrix}x+4y=2\\3x+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2-4y\\3\left(2-4y\right)+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{1}{5}\\x=\frac{6}{5}\end{matrix}\right.\)

8) \(\left\{{}\begin{matrix}-x-y=2\\-2x-3y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-x-2\\-2x-3\left(-x-2\right)=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)

9) \(\left\{{}\begin{matrix}2x-3y=2\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+2}{2}\\-4\cdot\frac{3y+2}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)

21 tháng 3 2020

Nguyễn Thành Trương 2GP cả công đánh máy nữa nhé.

31 tháng 5 2020

a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)

\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)

31 tháng 5 2020

bạn giải câu g hộ mỉnh đc ko

8 tháng 7 2017

1/

\(\left\{{}\begin{matrix}3x+2y=6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=6\\3x-3y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5y=0\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(2;0\right)\)

2/

\(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-6y=2\\-4x+6y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0x=4\\-4x+6y=2\end{matrix}\right.\)

Vì 0x=4 vô nghiệm \(\Rightarrow-4x+6y=2\) vô nghiệm

Vậy hệ phương trình đã cho vô nghiệm

3/ \(\left\{{}\begin{matrix}2x+3y=5\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x+15y=25\\10x-8y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}23y=23\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\5x-4=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (1;1)

9 tháng 7 2017

cái này học trước r ak .

9 tháng 7 2017

lên fb mk gửi chi tiết cho

26 tháng 7 2017

1) hpt \(\Leftrightarrow\left\{{}\begin{matrix}x+4y=2\\6x+4y=8\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2-x}{4}\\5x=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=\dfrac{6}{5}\end{matrix}\right.\)

Kl: x=6/5 và y=1/5

2) hpt \(\Leftrightarrow\left\{{}\begin{matrix}-2x-2y=4\\-2x-4y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\2y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Kl...

3) hpt \(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=2\\2x-3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+3y}{2}\\0=3\left(vô-lý\right)\end{matrix}\right.\)

kl: hpt vn