Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Lấy PT(1) cộng PT(2) thu được:
\(2x^3-x^2-2xy-3xy^2-y^2-y^3-1=0\)
\(\Leftrightarrow (2x^3-3xy^2-y^3)-(x^2+2xy+y^2)-1=0\)
\(\Leftrightarrow [2x^2(x+y)-2xy(x+y)-y^2(x+y)]-(x+y)^2-1=0\)
\(\Leftrightarrow (2x^2-2xy-y^2)(x+y)-(x+y)^2-1=0\)
\(\Leftrightarrow 2(x+y)-(x+y)^2-1=0\)
\(\Leftrightarrow -(x+y-1)^2=0\Rightarrow x+y=1\Rightarrow y=1-x\)
Thay vào PT(1) ta có:
\(2x^2-2x(1-x)-(1-x)^2=2\)
\(\Leftrightarrow 3x^2-3=0\Rightarrow x=\pm 1\)
\(x=1\Rightarrow y=0; x=-1\Rightarrow y=2\) (thỏa mãn)
Vậy $(x,y)=(1,0); (-1,2)$
Lời giải:
Lấy PT(1) trừ đi PT(2) ta thu được:
$x^2+xy-x+y-2y^2=0$
$\Leftrightarrow (x^2-y^2)+(xy-y^2)-(x-y)=0$
$\Leftrightarrow (x-y)(x+y)+y(x-y)-(x-y)=0$
$\Leftrightarrow (x-y)(x+2y-1)=0$
$\Rightarrow x-y=0$ hoặc $x+2y-1=0$
Nếu $x-y=0\Rightarrow x=y$
Thay vào PT(1): $2y^2+3y^2+2y+y=0$
$\Leftrightarrow y=0$ hoặc $y=-\frac{3}{5}$
$y=0$ thì $x=0$
$y=-\frac{3}{5}$ thì $x=\frac{-3}{5}$
Nếu $x+2y-1=0\Rightarrow 2y=1-x$. Thay vào PT(2):
$2x^2+2x(1-x)+(1-x)^2+6x=0$
$\Leftrightarrow x^2+6x+1=0$
$\Rightarrow x=-3\pm 2\sqrt{2}\Rightarrow y=2\mp \sqrt{2}$
Vậy.......
Lời giải:
Lấy PT(1) trừ đi PT(2) ta thu được:
$x^2+xy-x+y-2y^2=0$
$\Leftrightarrow (x^2-y^2)+(xy-y^2)-(x-y)=0$
$\Leftrightarrow (x-y)(x+y)+y(x-y)-(x-y)=0$
$\Leftrightarrow (x-y)(x+2y-1)=0$
$\Rightarrow x-y=0$ hoặc $x+2y-1=0$
Nếu $x-y=0\Rightarrow x=y$
Thay vào PT(1): $2y^2+3y^2+2y+y=0$
$\Leftrightarrow y=0$ hoặc $y=-\frac{3}{5}$
$y=0$ thì $x=0$
$y=-\frac{3}{5}$ thì $x=\frac{-3}{5}$
Nếu $x+2y-1=0\Rightarrow 2y=1-x$. Thay vào PT(2):
$2x^2+2x(1-x)+(1-x)^2+6x=0$
$\Leftrightarrow x^2+6x+1=0$
$\Rightarrow x=-3\pm 2\sqrt{2}\Rightarrow y=2\mp \sqrt{2}$
Vậy.......
(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y
(2) + (3)
+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)
+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ
VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)
+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y
Bạn tham khảo tại link sau:
Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến