\(\hept{\begin{cases}x+2y=8y^2+\sqrt{1-x^2}\\\sqrt{x^2-2x+4y+11}=1+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

Cuối cùng cũng giải được câu này.

Ta có:

\(\hept{\begin{cases}x+2y=8y^2+\sqrt{1+x^2}\left(1\right)\\\sqrt{x^2-2x+4y+11}=1+\sqrt{x-4y+2}\left(2\right)\end{cases}}\)

Từ PT (1) ta có điều kiện là:

\(\hept{\begin{cases}1-x^2\ge0\\x+2y-8y^2\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-1\le x\le1\\8y^2-2y\le x\le1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-1\le x\le1\\-\frac{1}{4}\le y\le\frac{1}{2}\end{cases}}\)

Từ đây ta có: 

\(\hept{\begin{cases}1+\sqrt{x-4y+2}\le1+\sqrt{1+1+2}=3\\\sqrt{x^2-2x+4y+11}=\sqrt{\left(x-1\right)^2+4y+10}\ge\sqrt{0-1+10}=3\end{cases}}\)

Từ đây ta có ở PT thứ 2 thì \(\hept{\begin{cases}VT\ge3\\VP\le3\end{cases}}\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=1\\y=-\frac{1}{4}\end{cases}}\)

Kiểm tra lại ta thấy nghiệm này thỏa mãn hệ

Vậy hệ có nghiệm duy nhất là: \(\hept{\begin{cases}x=1\\y=-\frac{1}{4}\end{cases}}\)

11 tháng 3 2019

saos mas khos thes?

3 tháng 6 2020

đk: \(x+2y\ge0\)

\(x+2y=\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{\left(x+y\right)^2}{3}+y^2}\ge\sqrt{\frac{\left(x+2y\right)^2}{4}}+\sqrt{\frac{\left(x+2y\right)^2}{4}}=x+2y\)

\(\Rightarrow\)\(x=2y\)\(\Rightarrow\)\(x=3-y=3-\frac{x}{2}\)\(\Rightarrow\)\(\hept{\begin{cases}x=2\\y=\frac{x}{2}=1\end{cases}}\)

7 tháng 1 2019

i will chịu