\(\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2014

khi bình phương đã tới một điểm nhất định thì ta phải căn ra để quy ước ở đây ta có 7+4 can3 suy ra bình phương đặt phải lấy công thức ms quý 7+4+3 về n+ghvay 1trenve

25 tháng 10 2014

VT = \(\sqrt{\left(2+\sqrt{3}\right)^2}\)+\(\sqrt{\left(2-\sqrt{3}\right)^2}\)= (2 + \(\sqrt{3}\)) + (2 - \(\sqrt{3}\)) = 4

a: \(D=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

b: \(E=\sqrt{6-2\sqrt{5}}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=18+6\sqrt{5}-6\sqrt{5}-10=8\)

28 tháng 11 2015

Tất cả các bài này nếu lười suy nghĩ thì bình lên bậc 4 rồi dùng máy tính bỏ túi tìm nghiệm và phân tích nhân tử!

1/\(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

\(VT=\sqrt{3}\left[2\left(x^2-x+1\right)-\left(x^2+x+1\right)\right]\)

Có dạng đẳng cấp rồi.

2/ \(x^4+1=\left(x^2+1\right)^2-2x^2=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)

\(VT=\left(x^2+\sqrt{2}x+1\right)+3\left(x^2-\sqrt{2}x+1\right)\)-> dạng đẳng cấp

3/ tương tự: \(x^3+3x^2+4x+2=\left(x^2+2x+2\right)\left(x+1\right)\)

\(VT=3\left(x^2+2x+2\right)-8\left(x+1\right)????\)

4/ Chuyển vế căn ở giữa, bình phương thu gọn rồi làm giống như 3 bài ở trên.

5/ Có lẽ tương tự

 

10 tháng 9 2020

\(1,\sqrt{\left(2+\sqrt{7}\right)^2-\sqrt{\left(2-\sqrt{7}\right)^2}}\)    ( áp dụng hđt thứ 3 \(a^2-b^2=\left(a-b\right)\left(a+b\right)\))

\(=\sqrt{\left(2+\sqrt{7}+2-\sqrt{7}\right)\left(2+\sqrt{7}-2+\sqrt{7}\right)}\)

\(=\sqrt{4\cdot\sqrt{7}}\)

\(2,\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}-\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)

\(\Leftrightarrow\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}=\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)

\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2=\left(5\sqrt{2}+3\sqrt{5}\right)^2\)

\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2-\left(5\sqrt{2}+3\sqrt{5}\right)^2\)

\(=\left(3\sqrt{5}-5\sqrt{2}+5\sqrt{2}+3\sqrt{5}\right)\left(3\sqrt{5}-5\sqrt{2}-5\sqrt{2}-3\sqrt{5}\right)\)

\(=6\sqrt{5}\cdot\left(-10\sqrt{2}\right)\)

\(3,\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\)

\(\Leftrightarrow\sqrt{10+2\sqrt{21}}=\sqrt{10-2\sqrt{21}}\)

\(\Leftrightarrow10+2\sqrt{21}=10-2\sqrt{21}\)

\(\Leftrightarrow4\sqrt{21}\)

cuối lười tính nên thôi nhá :>

11 tháng 9 2020

tks :>

a).  \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)

\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\) 

ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC

20 tháng 7 2020

Bài làm:

a) \(A=\sqrt{4}-2\sqrt{3}+\sqrt{7}-4\sqrt{3}\)

\(A=2+\sqrt{7}-6\sqrt{3}\)

b) \(B=\sqrt{3}+\sqrt{8}+\sqrt{3}-\sqrt{8}\)

\(B=2\sqrt{3}\)