K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2021

a) ( x + 1 )( x + 3 )( x + 5 )( x + 7 ) = 9

<=> [ ( x + 1 )( x + 7 ) ][ ( x + 3 )( x + 5 ) ] - 9 = 0

<=> ( x2 + 8x + 7 )( x2 + 8x + 15 ) - 9 = 0

Đặt t = x2 + 8x + 7 

pt <=> t( t + 8 ) - 9 = 0

<=> t2 + 8t - 9 = 0

<=> ( t - 1 )( t + 9 ) = 0

<=> ( x2 + 8x + 7 - 1 )( x2 + 8x + 7 + 9 ) = 0

<=> ( x2 + 8x + 6 )( x2 + 8x + 16 ) = 0

<=> x2 + 8x + 6 = 0 hoặc x2 + 8x + 16 = 0

+) x2 + 8x + 6 = 0

Δ = b2 - 4ac = 82 - 4.6 = 64 - 24 = 40

Δ > 0 nên phương trình có hai nghiệm phân biệt : \(x_1=-4+\sqrt{10}\)\(x_2=-4-\sqrt{10}\)

+) x2 + 8x + 16 = 0

Δ = b2 - 4ac = 82 - 4.16 = 64 - 64 = 0

Δ = 0 nên phương trình có nghiệm kép x1 = x2 = -4

Vậy ... 

5 tháng 3 2021

b) ( x + 1 )4 + ( x + 5 )4 = 25

Đặt t = x + 3

pt <=> ( t - 2 )4 + ( t + 2 )4 - 25 = 0

<=> 2t4 + 48t2 + 32 - 25 = 0

<=> 2t4 + 48t2 + 7 = 0

<=> 2( x + 3 )4 + 48( x + 3 )2 + 7 = 0

Dễ thấy pt ≥ 7 > 0 ∀ x => pt vô nghiệm

13 tháng 10 2019

a,đk -1<x<7

x+1+2 căn 7-x-2 căn x+1=căn (x+1)(7-x)

9 tháng 9 2015

a. Phương trình tương đương với \(\left(x^2-2x-2\right)\left(x^2+5x-2\right)=0\)  hay \(x^2-2x-2=0\)  hoặc \(x^2+5x-2=0\). Đến đây sử dụng Delta hoặc viết hai phương trình dưới dạng \(\left(x-1\right)^2=3,\left(2x+5\right)^2=33\) ta được bốn nghiệm là \(x=1\pm\sqrt{3},-\frac{5}{2}\pm\frac{\sqrt{33}}{2}\)

b. Phương trình tương đương với \(3\left(x+5\right)\left(x+6\right)\left(x+9\right)=8x+6\left(x+5\right)\left(x+6\right)\leftrightarrow3\left(x+5\right)\left(x+6\right)\left(x+9\right)=\left(x+9\right)\left(6x+20\right)\)

hay \(\left(x+9\right)\left(3x^2+27x+70\right)=0\leftrightarrow x=-9.\)

6 tháng 7 2019

câu a

Học tại nhà - Toán - Bài 110035

6 tháng 7 2019

b,  ĐK \(x\ge-4\)

PT 

<=> \(\left(x-\sqrt{x+4}\right)+\left(\sqrt{2x^2-10x+17}-2x+3\right)=0\)

<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}+\frac{-2x^2+2x+8}{\sqrt{2x^2-10x+17}+2x-3}=0\)với \(x+\sqrt{x+4}\ne0\)

<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}-\frac{2\left(x^2-x-4\right)}{\sqrt{2x^2-10x+17}+2x-3}=0\)

<=> \(\orbr{\begin{cases}x^2-x-4=0\\\frac{1}{x+\sqrt{x+4}}-\frac{2}{\sqrt{2x^2-10x+17}+2x-3}=0\left(2\right)\end{cases}}\)

Giải (2)

=> \(2x+2\sqrt{x+4}=2x-3+\sqrt{2x^2-10x+17}\)

<=> \(\sqrt{2x^2-10x+17}=2\sqrt{x+4}+3\)

<=> \(2x^2-10x+17=4\left(x+4\right)+9+12\sqrt{x+4}\)

<=> \(x^2-7x-4=6\sqrt{x+4}\)

<=> \(\left(x-6\right)^2+5x-40=6\sqrt{6\left(x-6\right)-5x+40}\)

Đặt x-6=a;\(\sqrt{6\left(x-6\right)-5x+40}=b\)

=> \(\hept{\begin{cases}a^2+5x-40=6b\\b^2+5x-40=6a\end{cases}}\)

=> \(a^2-b^2+6\left(a-b\right)=0\)

<=> \(\orbr{\begin{cases}a=b\\a+b+6=0\end{cases}}\)

+ a=b

=> \(x-6=\sqrt{x+4}\)

=> \(\hept{\begin{cases}x\ge6\\x^2-13x+32=0\end{cases}}\)=> \(x=\frac{13+\sqrt{41}}{2}\)

+ a+b+6=0

=> \(x+\sqrt{x+4}=0\)(loại)

Vậy \(S=\left\{\frac{13+\sqrt{41}}{2};\frac{1+\sqrt{17}}{2}\right\}\)

18 tháng 8 2020

lên hỏi đáp 247 hỏi cho nhanh !