\(\sqrt{3}\cos2x-\left(\sin x-\cos x\right)^2=2\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 9 2020

c/

\(\Leftrightarrow sin3x-\sqrt{3}cos3x=sinx+\sqrt{3}cosx\)

\(\Leftrightarrow\frac{1}{2}sin3x-\frac{\sqrt{3}}{2}cos3x=\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{3}=x+\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{3}=\frac{2\pi}{3}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

NV
10 tháng 9 2020

a/

\(\Leftrightarrow\sqrt{3}cos2x-\left(sin^2x+cos^2x-2sinx.cosx\right)=2\)

\(\Leftrightarrow\sqrt{3}cos2x-1+sin2x=2\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}sin2x=\frac{3}{2}\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{3}\right)=\frac{3}{2}\)

Vế phải lớn hơn 1 nên pt vô nghiệm

b/

\(\Leftrightarrow\frac{5}{2}\left(1+cos2x\right)+2sin2x=4\)

\(\Leftrightarrow4sin2x+5cos2x=3\)

\(\Leftrightarrow\frac{4}{\sqrt{41}}sin2x+\frac{5}{\sqrt{41}}cos2x=\frac{3}{\sqrt{41}}\)

Đặt \(\frac{4}{\sqrt{41}}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow sin2x.cosa+cos2x.sina=\frac{3}{\sqrt{41}}\)

\(\Leftrightarrow sin\left(2x+a\right)=\frac{3}{\sqrt{41}}=sinb\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+a=b+k2\pi\\2x+a=\pi-b+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{b}{2}-\frac{a}{2}+k\pi\\x=\frac{\pi}{2}-\frac{a}{2}-\frac{b}{2}+k\pi\end{matrix}\right.\)

NV
5 tháng 9 2020

c/

\(\Leftrightarrow1-sin^22x+\sqrt{3}sin2x+sin2x=1+\sqrt{3}\)

\(\Leftrightarrow-sin^22x+\left(\sqrt{3}+1\right)sin2x-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\sqrt{3}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

d/

\(\Leftrightarrow4\left(1-2sin^2x\right)+5sinx=4\left(3sinx-4sin^3x\right)+5\)

\(\Leftrightarrow16sin^3x-8sin^2x-7sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(4sinx+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=arcsin\left(-\frac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)

NV
5 tháng 9 2020

b/

\(\Leftrightarrow3cos^2x+4sin\left(2\pi-\frac{\pi}{2}-x\right)+1=0\)

\(\Leftrightarrow3cos^2x-4sin\left(x+\frac{\pi}{2}\right)+1=0\)

\(\Leftrightarrow3cos^2x-4cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arcos\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

3 tháng 4 2017

a) cosx - √3sinx = √2 ⇔ cosx - tansinx = √2

⇔ coscosx - sinsinx = √2cos ⇔ cos(x + ) =

3 tháng 4 2017

b) 3sin3x - 4cos3x = 5 ⇔ sin3x - cos3x = 1.

Đặt α = arccos thì phương trình trở thành

cosαsin3x - sinαcos3x = 1 ⇔ sin(3x - α) = 1 ⇔ 3x - α = + k2π

⇔ x = , k ∈ Z (trong đó α = arccos).



NV
11 tháng 2 2020

a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp

b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)

\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)

\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)

\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)

c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:

\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)

Đặt \(\sqrt{tanx+1}=t\ge0\)

\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)

\(\Leftrightarrow3t^3-5t^2+3t-10=0\)

\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)

d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)

Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)

\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)

\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)