Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) ( SỬA ĐỀ)
\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)
\(|x-1-2|+|x-1-3|=1\)
\(|x-3|+|x-4|=1\)
Với \(x\le3\)thì PT thành \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)
Với \(3\le x< 4\)thì PT thành \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)
Với \(x\ge4\)thì PT thành \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)
Vậy \(3\le x\le4\)
(1)Phương trình đã cho tương đương với:
√3x2−7x+3−√3x2−5x−1=√x2−2−√x2−3x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
⇔−2x+4√3x2−7x+3+√3x2−5x−1=3x−6√x2−2+√x2−3x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23≤x≤723≤x≤7
Phương trình đã cho tương đương với:
3x−18√3x−2+4+x−6√7−x−1+(x−6)(3x2+x−2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0
⇔(x−6)(3√3x−2+4+1√7−x−1+3x2+x−2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0
⇔x=6⇔x=6
vì với 23≤x≤723≤x≤7
thì: (3√3x−2+4+1√7−x−1+3x2+x−2)(33x−2+4+17−x−1+3x2+x−2)>0
Dài Vãi mik ko bít giải phhương trình sorry nha
a) ĐKXĐ : \(x\ge5\)
Đặt \(\sqrt{x-5}=a;\sqrt[3]{3-x}=b\)(a \(\ge0\))
Khi đó phương trình thành a + b = 2
Lại có \(b^3+a^2=-2\)
=> HPT : \(\hept{\begin{cases}a+b=2\\b^3+a^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+\left(2-b\right)^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+b^2-4b+6=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2-b\\\left(b+3\right)\left(b^2-2b+2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-3\end{cases}}\)(tm)
a = 5 => x = 30 (tm)
Vậy x = 30 là nghiệm phương trình
d) Ta có \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=0\)
<=> \(\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-4\right)^2}=2\)
<=> |5x - 2| + |5x - 4| = 2
Lại có |5x - 2| + |5x - 4| = |5x - 2| + |4 - 5x| \(\ge\left|5x-2+4-5x\right|=2\)
Dấu "=" xảy ra <=> \(\left(5x-2\right)\left(4-5x\right)\ge0\Leftrightarrow\frac{2}{5}\le x\le\frac{4}{5}\)
Vậy \(\frac{2}{5}\le x\le\frac{4}{5}\)là nghiệm phương trình
a, \(đk:3\le x\le5\)
\(3x^2-17x+24=\sqrt{x-3}+3\sqrt{5-x}\)
\(\Leftrightarrow\sqrt{x-3}+3\sqrt{5-x}-3x^2+17x-24=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-3}-1\right)\left(\sqrt{x-3}+1\right)}{\sqrt{x-3}-1}+3\cdot\frac{\left(\sqrt{5-x}-1\right)\left(\sqrt{5-x}+1\right)}{\sqrt{5-x}-1}-3x^2+17x-20=0\)
\(\Leftrightarrow\frac{x-3-1}{\sqrt{x-3}-1}+3\cdot\frac{5-x-1}{\sqrt{5-x}-1}-3\left(x-4\right)\left(x+\frac{5}{3}\right)=0\)
\(\Leftrightarrow\frac{x-4}{\sqrt{x-3}-1}-3\cdot\frac{x-4}{\sqrt{5-x}-1}-3\left(x-4\right)\left(x+\frac{5}{3}\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(\frac{1}{\sqrt{x-3}-1}-\frac{3}{\sqrt{5-x}-1}-3x-5\right)=0\)
ngoặc thứ 2 kiểu ....
\(\Leftrightarrow x-4=0\Leftrightarrow x=4\left(tm\right)\)
\(a,3x^2-17x+24=\sqrt{x-3}+3\sqrt{5-x}\)
\(3x^2-17x+20=\left(\sqrt{x-3}-1\right)+\left(3\sqrt{5-x}-3\right)\)
\(\left(x-4\right)\left(3x-5\right)=\frac{x-4}{\sqrt{x-3}+1}+\frac{36-9x}{3\sqrt{5-x}+3}\)
\(\left(x-4\right)\left(3x-5-\frac{1}{\sqrt{x-3}+1}+\frac{9}{-3\sqrt{5-x}-3}\right)\)
\(3x-5-\frac{1}{\sqrt{x-3}+1}+\frac{9}{-3\sqrt{5-x}-3}>0\)
\(\orbr{\begin{cases}x-4=0< =>x=4\left(TM\right)\\3x-5-\frac{1}{\sqrt{x-3}+1}+\frac{9}{-3\sqrt{5-x}-3}=0\left(KTM\right)\end{cases}}\)
vậy pt có nghiệm duy nhất là 4