Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có:
\(\frac{x+1}{15}+\frac{x+2}{7}+\frac{x+4}{4}+6=0\)
\(\Leftrightarrow\frac{x}{15}+\frac{1}{15}+\frac{x}{7}+\frac{2}{7}+\frac{x}{4}+\frac{4}{4}+6=0\)
\(\Leftrightarrow\frac{x}{15}+\frac{x}{7}+\frac{x}{4}=-\frac{772}{105}\)
\(\Leftrightarrow x\left(\frac{1}{15}+\frac{1}{7}+\frac{1}{4}\right)=-\frac{772}{105}\)
\(\Leftrightarrow x=-16\)
Vậy phương trình trên có nghiệm là x = -16.
b. Cách làm tương tự.
Chúc bạn học tốt@@
Pt <=> \(\left(\frac{x+14}{200}+1\right)+\left(\frac{x+27}{187}+1\right)+\left(\frac{x+105}{109}+1\right)=\left(\frac{x+200}{14}+1\right)+\left(\frac{x+187}{27}+1\right)+\left(\frac{x+109}{105}+1\right)\)<=> \(\frac{x+14+200}{200}+\frac{x+27+187}{187}+\frac{x+105+109}{109}=\frac{x+200+14}{14}+\frac{x+187+27}{27}+\frac{x+109+105}{105}\)<=> \(\frac{x+214}{200}+\frac{x+214}{187}+\frac{x+214}{109}=\frac{x+214}{14}+\frac{x+214}{27}+\frac{x+214}{105}\)
<=> \(\frac{x+214}{200}+\frac{x+214}{187}+\frac{x+214}{109}-\frac{x+214}{14}-\frac{x+214}{27}-\frac{x+214}{105}=0\)
<=> \(\left(x+214\right)\left(\frac{1}{200}+\frac{1}{187}+\frac{1}{109}-\frac{1}{14}-\frac{1}{27}-\frac{1}{105}\right)=0\)
Vì \(\left(\frac{1}{200}+\frac{1}{187}+\frac{1}{109}-\frac{1}{14}-\frac{1}{27}-\frac{1}{105}\right)\ne0\)
<=> \(x+214=0\)
<=> \(x=-214\)
Ta có:
\(\frac{x+14}{200}+\frac{x+27}{187}+\frac{x+105}{109}=\frac{x+200}{14}+\frac{x+187}{27}+\frac{x+109}{105}\)
Cộng thêm mỗi phân thức 1 ta được:
\(\frac{x+214}{200}+\frac{x+214}{187}+\frac{x+214}{109}-\frac{x+214}{14}-\frac{x+214}{27}-\frac{x+214}{105}=0\)
\(\Leftrightarrow x+214=0\Rightarrow x=-214\)
\(\left(\frac{x+14}{200}+1\right)+\left(\frac{x+27}{187}+1\right)+\left(\frac{x+105}{109}+1\right)=\left(\frac{x+200}{14}+1\right)\)
\(+\left(\frac{x+187}{27}+1\right)+\left(\frac{x+109}{105}+1\right)\)
\(\Rightarrow\frac{x+214}{200}+\frac{x+214}{187}+\frac{x+214}{109}-\frac{x+214}{14}-\frac{x+214}{27}-\frac{x+214}{105}=0\)
\(\Rightarrow\left(x+214\right)\left(\frac{1}{200}+\frac{1}{187}+\frac{1}{109}-\frac{1}{14}-\frac{1}{27}-\frac{1}{105}\right)=0\)
Mà \(\frac{1}{200}+\frac{1}{187}+\frac{1}{109}-\frac{1}{14}-\frac{1}{27}-\frac{1}{105}\ne0\)
\(\Rightarrow x+214=0\)
\(\Rightarrow x=-214\)
Vậy x = -214
\(\Leftrightarrow\frac{x+14}{200}+\frac{x+27}{187}+\frac{x+105}{109}-\frac{x+200}{14}-\frac{x+187}{27}-\frac{x+109}{105}=0\)
\(\Leftrightarrow\left(\frac{x+14}{200}+1\right)+\left(\frac{x+27}{187}+1\right)+\left(\frac{x+105}{109}+1\right)-\left(\frac{x+200}{14}+1\right)-\left(\frac{x+187}{27}+1\right)-\left(\frac{x+109}{105}+1\right)=0\)\(\Leftrightarrow\frac{x+214}{200}+\frac{x+214}{187}+\frac{x+214}{109}-\frac{x+214}{14}-\frac{x+214}{27}-\frac{x+214}{105}=0\)
\(\Leftrightarrow\left(x+214\right)\left(\frac{1}{200}+\frac{1}{187}+\frac{1}{109}-\frac{1}{14}-\frac{1}{27}-\frac{1}{105}\right)=0\)
Mà \(\frac{1}{200}+\frac{1}{187}+\frac{1}{109}< \frac{1}{14}+\frac{1}{27}+\frac{1}{105}\Rightarrow\frac{1}{200}+\frac{1}{187}+\frac{1}{109}-\frac{1}{14}-\frac{1}{27}-\frac{1}{105}\ne0\)
\(\Rightarrow x+214=0\)
\(\Rightarrow x=-214\)
Vậy x=-214
\(\frac{x+14}{200}+\frac{x+27}{187}+\frac{x+105}{109}=\frac{x+200}{14}+\frac{x+187}{27}+\frac{x+109}{105}\\\Leftrightarrow \frac{x+14}{200}+1+\frac{x+27}{187}+1+\frac{x+105}{109}+1=\frac{x+200}{14}+1+\frac{x+187}{27}+1+\frac{x+109}{105}+1\\\Leftrightarrow \frac{x+214}{200}+\frac{x+214}{187}+\frac{x+214}{109}-\frac{x+214}{14}-\frac{x+214}{27}-\frac{x+214}{105}=0\\\Leftrightarrow \left(x+214\right)\left(\frac{1}{200}+\frac{1}{187}+\frac{1}{109}-\frac{1}{14}-\frac{1}{27}-\frac{1}{105}\right)=0\)
\(\Leftrightarrow x+214=0\left(vi\frac{1}{200}+\frac{1}{187}+\frac{1}{109}-\frac{1}{14}-\frac{1}{27}-\frac{1}{105}\ne0\right)\\\Leftrightarrow x=-214 \)
Vậy tập nghiệp của phương trình trên là \(S=\left\{-214\right\}\)
a) 3x - 2(5 + 2x) =45 - 2x
=> 3x - 10 - 4x = 45 - 2x
=> 3x - 4x + 2x = 45 + 10
=> x = 55
b) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
=> \(\frac{x-3}{5}=\frac{2x+17}{3}\)
=> 5(2x + 17) = 3(x - 3)
=> 10x + 85 = 3x - 9
=> 7x = -94
=> x = -94/7
c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x-33}{7}\)
=> \(\frac{10x-6}{12}-\frac{21x-3}{12}=\frac{4x-33}{7}\)
=> \(\frac{-11x-3}{12}=\frac{4x-33}{7}\)
=> (-11x - 3).7 = (4x - 33).12
= -77x - 21 = 48x - 396
=> x = 3
d) (x - 1)(5x + 3) = (3x - 8)(x - 1)
=> (x - 1)(5x + 3) - (3x - 8)(x -1) = 0
=> (x - 1)(2x + 11) = 0
=> \(\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5,5\end{cases}}\)
e) (x - 1)(x2 + 5x - 2) - (x3 - 1) = 0
=> (x - 1)(x2 + 5x - 2) - (x - 1)(x2 + x + 1) = 0
=> (x - 1)(4x - 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=0,75\end{cases}}\)
f) \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
=> \(\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=0\)
=> \(\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)
=> \(\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)
=> x - 50 = 0 (Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\ne0\))
=> x = 50
b, \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
\(\Leftrightarrow\frac{x-3}{5}=\frac{17+2x}{3}\Leftrightarrow3x-9=85+10x\)
\(\Leftrightarrow-7x=94\Leftrightarrow x=-\frac{94}{7}\)
f, sửa : \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\right)=0\)
\(\Leftrightarrow x=-66\)
\(a)5-\left(x-6\right)=4\left(3-2x\right)\)
\(\Leftrightarrow5-x+6=12-8x\)
\(\Leftrightarrow-x+8x=12-5-6\)
\(\Leftrightarrow7x=1\Leftrightarrow x=\frac{1}{7}\)
a) 5-(x-6)=4(3-2x)
<=>5-x-6=12-8x
<=>-x+8x=2-5-6
<=>7x=1
<=>x=1/7