5(y-x)=5+3x+2y 6(x+y)=8+2x-3y

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

a) ĐK: x>=2

pt <=>\(\sqrt{x+3}+\sqrt{x-2}=5\) (bình phương 2 vế không âm)

<=>\(x+3+x-2+2\sqrt{\left(x+3\right)\left(x-2\right)}=25\) (chuyển vế rút gọn)

<=>\(\sqrt{\left(x+3\right)\left(x-2\right)}=12-x\) 

<=>\(\hept{\begin{cases}12-x\ge0\\x^2+x-6=144-24x+x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\le12\\25x=150\end{cases}}}\Leftrightarrow x=6\)( thỏa mãn điều kiện )

b)( Phương trình đối xứng loại 2, lấy hiệu hai phuowmh trình của hệ)

=> \(x^2-y^2=x-y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x+y-1=0\end{cases}}\)

Với x-y=0 <=> x=ythế vào một trong hai phương trình được một phương trình bậc 2. em tự giải tiếp nhé!

Với x+y-1=0 <=> x=1-y   thế vào  và làm như trên.

14 tháng 12 2018

Em hiểu câu a rồi nhưng câu b em không hiểu lắm cho dù đã học đối xứng loại 2

15 tháng 10 2020

Cộng theo từng vế của hai phương trình ta được: 

 \(x^2-y^2=\left(2y+3x-6\right)-\left(2x+3y-6\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=x-y\)

\(\Leftrightarrow\left(x+y-1\right)\left(x-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=1-y\end{cases}}\)

TH1: \(x=y\)thay vào phương trình thứ nhất ta được: \(x^2=2x+3x-6\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}y=3\\y=2\end{cases}}\)

TH2: \(x=1-y\)thay vào phương trình thứ nhất ta được:

\(\left(1-y\right)^2=2y+3\left(1-y\right)-6\)

\(\Leftrightarrow y^2-2y+1=-y-3\)

\(\Leftrightarrow y^2-y+4=0\)(vô nghiệm)

Vậy hệ phương trình có nghiệm \(\left(x,y\right)\in\left\{\left(3;3\right),\left(2;2\right)\right\}\)

15 tháng 10 2020

Trừ theo từng vế, nhầm.

8 tháng 7 2019

\(\hept{\begin{cases}\frac{3}{5}x-\frac{2}{5}y+\frac{5}{3}x-y-x=1\\\frac{2}{3}x-y+2x-\frac{3}{2}y-y=1\end{cases}}\)<=>\(\hept{\begin{cases}\frac{19}{15}x-\frac{7}{5}y=1\\\frac{8}{3}x-\frac{7}{2}y=1\end{cases}}\)<=>x=3;y=2

7 tháng 1 2019

i will chịu

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

28 tháng 9 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)

\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)