\(\left(2+\sqrt{3}\right)^{x-1}\ge\left(2-\sqrt{3}\right)^{\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Điều kiện xác định :\(x\ne-1\)

Ta có : \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\Rightarrow\left(2-\sqrt{3}\right)=\left(2+\sqrt{3}\right)^{-1}\)

\(\Rightarrow\) Bất phương trình : \(\left(2+\sqrt{3}\right)^{x-1}\ge\left(2+\sqrt{3}\right)^{\frac{1-x}{x+1}}\)

                               \(\Leftrightarrow x-1\ge\frac{1-x}{x+1}\)

                               \(\Leftrightarrow\frac{\left(x-1\right)\left(x+2\right)}{x+1}\ge0\)

                               \(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\x\ge1\end{array}\right.\)

Vậy bất phương trình có tập nghiệm là \(S=\)[ -2; -1) \(\cup\) [1; \(+\infty\))

 

9 tháng 5 2016

Điều kiện \(x^2-2x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) khi đó :

Bất phương trình \(\Leftrightarrow3^{\sqrt{x^2-2x}}\ge\left(3\right)^{\sqrt{\left(x-1\right)^2}-x}\Leftrightarrow\sqrt{x^2-2x}\ge\left|x-1\right|-x\)

- Khi \(x\ge2\Rightarrow x-1>0\) nên bất phương trình \(\sqrt{x^2-2x}\ge-1\) đúng với mọi \(x\ge2\)

- Khi \(x\le0\Rightarrow x-1< 0\) nên bất phương trình \(\sqrt{x^2-2x}\ge1-2x\)

                                                                 \(\Leftrightarrow\begin{cases}x^2-2x\ge1-4x+4x^2\\x\le0\end{cases}\) vô nghiệm

Vậy tập nghiệm của bất phương trình là : S = [2;\(+\infty\) )

 

4 tháng 3 2020

mình sửa lại bài 3 ý a, \(\left|5x-3\right|< 2\)

7 tháng 4 2016

Điều kiện : \(x\ge1\)

\(3\left(x^2-2\right)+\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}>\sqrt{x}\left(\sqrt{x-1}+3\sqrt{x^2-1}\right)\) \(\Leftrightarrow6\left(x^2-2\right)+\frac{8\sqrt{2}}{\sqrt{x^2-x+1}}-2\sqrt{x^2-x}-6\sqrt{x}\sqrt{x^2-1}>0\)

\(\Leftrightarrow3\left(\sqrt{x^2-1}-\sqrt{x}\right)^2+\left(\sqrt{x^2-x}-1\right)^2+2\left(\frac{4\sqrt{2}}{\sqrt{x^2-x}+1}+x^2-x-5\right)>0\)

Xét hàm số \(f\left(t\right)=\frac{4\sqrt{2}}{\sqrt{t+1}}+t-5,\left(t\ge0\right)\)

Ta có \(f'\left(t\right)=1-\frac{2\sqrt{2}}{\left(t+1\right)\sqrt{t+1}}\)

\(f'\left(t\right)=0\Leftrightarrow t=1\)

Bảng xét dấu :

x0                            1                             +\(\infty\)
f'(x)  /           -               0                + 

Suy ra \(f\left(t\right)\ge f\left(1\right)\), với mọi \(t\in\left[0;+\infty\right]\)\(\Rightarrow\) \(f\left(t\right)\ge0\), với mọi \(t\in\left[0;+\infty\right]\). Dấu = xảy ra \(\Leftrightarrow t=1\)

Do \(x^2-x\ge0\) với mọi \(x\in\left[0;+\infty\right]\)\(\Rightarrow\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}+x^2-x-5\ge0\) với mọi \(x\in\left[0;+\infty\right]\), dấu = xảy ra khi \(x^2-x=1\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)

Khi đó \(3\left(\sqrt{x^2-1}-\sqrt{x}\right)^2+\left(\sqrt{x^2-1}-1\right)^2+2\left(\frac{4\sqrt{2}}{\sqrt{x^2-1}+1}+x^2-x-5\right)>0\)

\(\Leftrightarrow\begin{cases}\sqrt{x^2-1}-\sqrt{x}\ne0\\\sqrt{x^2-x}-1\ne0\\\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}+x^2-x-5\ne0\end{cases}\)  \(\Leftrightarrow x\ne\frac{1+\sqrt{5}}{2}\)

Tập nghiệm của bất phương trình đã cho là 

\(S=\left(1;+\infty\right)\backslash\left(\frac{1+\sqrt{5}}{2}\right)\)

 

 

 

7 tháng 4 2017

lời giải

a)

\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)

\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)

\(\Leftrightarrow2x\le4\Rightarrow x\le2\)

\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)

\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)

8 tháng 5 2017

c)Đkxđ: x0
x+x>(2x+3)(x1)
x+x>2x+x3
x3>0
x>3. (tmđk).
 

NV
3 tháng 4 2020

a/

\(\Leftrightarrow\frac{\left(x^2-1\right)\left(x^2+1\right)}{x^2+3x}+x^2-1\ge0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{x^2+1}{x^2+3x}+1\right)\ge0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{2x^2+3x+1}{x^2+3x}\right)\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(2x+1\right)}{x\left(x+3\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(2x+1\right)\left(x+1\right)^2}{x\left(x+3\right)}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x< -3\\x=-1\\-\frac{1}{2}\le x< 0\\x\ge1\end{matrix}\right.\)

NV
3 tháng 4 2020

b/

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)\left(\frac{-2-2x}{x}\right)\le0\)

\(\Leftrightarrow\frac{-2.\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+1\right)}{x}\le0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x+1\right)^2}{x}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-2\\x=-1\\0< x\le1\\x\ge2\end{matrix}\right.\)

c/

\(\Leftrightarrow\left(\frac{4\left(x-1\right)-2x}{x\left(x-1\right)}\right)\left(\frac{x^2+1-2x}{x}\right)\le0\)

\(\Leftrightarrow\frac{\left(2x-4\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)

\(\Rightarrow1< x\le2\)

15 tháng 2 2017

\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)

do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương

\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)

TH(1) x<3 <=>3-x>5-2x=> x>2

Kết luận(1) \(2< x< 3\)

TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)

Kết luận(2) \(x\ge3\)

(1)và(2) nghiệm của Bpt là: x>2

NV
25 tháng 3 2019

Câu 1:

a/ \(x\ge-11\)

Đặt \(\sqrt{x+11}=a\ge0\Rightarrow11=a^2-x\), pt đã cho trở thành:

\(x^2+a=a^2-x\Leftrightarrow x^2-a^2+x+a=0\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

TH1: \(x+a=0\Leftrightarrow x+\sqrt{x+11}=0\Leftrightarrow-x=\sqrt{x+11}\)

\(\Leftrightarrow\left[{}\begin{matrix}-x\ge0\\x^2=x+11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x^2-x-11=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1-3\sqrt{5}}{2}\)

TH2: \(x-a+1=0\Leftrightarrow x+1=\sqrt{x+11}\) \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\\left(x+1\right)^2=x+11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+x-10=0\end{matrix}\right.\) \(\Rightarrow x=\frac{-1+\sqrt{41}}{2}\)

b/ \(\sqrt{9+x}=x-9\Leftrightarrow\left\{{}\begin{matrix}x-9\ge0\\9+x=\left(x-9\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge9\\x^2-19x+72=0\end{matrix}\right.\) \(\Rightarrow x=\frac{19+\sqrt{73}}{2}\)

NV
25 tháng 3 2019

Câu 2:

a/

\(f\left(x\right)=\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x-1\right)\left(x-4\right)}=\frac{\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x-4\right)}\)

Lập bảng xét dấu ta được:

\(f\left(x\right)>0\) khi \(\left[{}\begin{matrix}x< -1\\x>4\\1< x< 3\end{matrix}\right.\)

\(f\left(x\right)< 0\) khi \(\left[{}\begin{matrix}-1< x< 1\\3< x< 4\end{matrix}\right.\)

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

\(f\left(x\right)\) ko xác định tại \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

b/ \(h\left(x\right)=\frac{-x^2+3x-1}{\left(x^2-2x+3\right)\left(x+2\right)}\)

Lập bảng xét dấu ta được:

\(f\left(x\right)>0\) khi \(\left[{}\begin{matrix}x< -2\\\frac{3-\sqrt{5}}{2}< x< \frac{3+\sqrt{5}}{2}\end{matrix}\right.\)

\(f\left(x\right)< 0\) khi \(\left[{}\begin{matrix}-2< x< \frac{3-\sqrt{5}}{2}\\x>\frac{3+\sqrt{5}}{2}\end{matrix}\right.\)

\(f\left(x\right)=0\) tại \(x=\frac{3\pm\sqrt{5}}{2}\)

\(f\left(x\right)\) ko xác định tại \(x=-2\)