\(\ge\) 0

\(\frac{P_...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

Điều kiện để (1) có nghĩa là

\(\begin{cases}n\ge k\\n+3\ge0\\k+2\ge0\\n,k\in Z\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}n\ge k\\k\ge-2\\n,k\in Z\end{cases}\) 

Do n,k \(\ge\) 0, nên điều kiện là n \(\ge\) k; n,k \(\in\)Z               (2)

Ta có (1) \(\Leftrightarrow\) \(\frac{\left(n+5\right)!}{\left(n-k\right)!}\) \(\le\) 60\(\frac{\left(n+3\right)!}{\left(n-k+1\right)!}\)

\(\Leftrightarrow\) (n-4)(n+5) \(\le\) \(\frac{60}{n-k+1}\) \(\Leftrightarrow\) (n-4)(n+5)(n-k+1) \(\le\) 60           (3)

Vì n\(\ge\)\(\Rightarrow\) n-k+1>0\(\Rightarrow\) n-k+1\(\ge\) 1

Ta nhận thấy nếu n\(\ge\)4, thì

(n+4)(n+5)\(\ge\)72 \(\Rightarrow\) VT (3) \(\ge\)72

Do đó mọi n\(\ge\)4 không thỏa mãn (3)

- Xét lần lượt các khả năng

1) Nếu n = 0, do 0\(\le\)k\(\le\)n\(\Rightarrow\)k=0

Khi n=k=0 thì VT(3)=4.5.1=20 \(\Rightarrow\) n=0, k=0 thỏa mãn (3)

2) Nếu n=1, do  0\(\le\)k\(\le\)\(\Rightarrow\) \(\left[\begin{array}{nghiempt}k=0\\k=1\end{array}\right.\)

Thử lại n=1, k=0; n=1, k=1 đều thỏa mãn (3)

3) Nếu n=2 khi đó:

(3) \(\Leftrightarrow\) 6.7.(3-k)\(\le\)60

\(\Leftrightarrow\)3-k\(\le\)\(\frac{10}{7}\) \(\Rightarrow\) 3-k=1 \(\Rightarrow\)k=2

4) Nếu n=3

(3)\(\Leftrightarrow\) 7.8.(4-k)\(\le\)60

\(\Leftrightarrow\)4-k\(\le\)\(\frac{60}{56}\) \(\Rightarrow\) 4-k=1 \(\Rightarrow\) k=3

Vậy (1) có các nghiệm (n,k) sau

(0,0), (1,0), (1,1), (2,2), (3,3).

 

 

NV
19 tháng 6 2019

\(\Leftrightarrow\frac{1}{2}sinx.sin2x=0\Rightarrow sin2x=0\Rightarrow2x=k\pi\Rightarrow x=\frac{k\pi}{2}\)

30 tháng 7 2019
https://i.imgur.com/qOszLcC.jpg
22 tháng 11 2017

1/ \(2C^k_n+5C^{k+1}_n+4C^{k+2}_n+C^{k+3}_n\)

\(=2\left(C^k_n+C_n^{k+1}\right)+3\left(C^{k+1}_n+C^{k+2}_n\right)+\left(C^{k+2}_n+C^{k+3}_n\right)\)

\(=2C_{n+1}^{k+1}+3C_{n+1}^{k+2}+C_{n+1}^{k+3}\)

\(=2\left(C_{n+1}^{k+1}+C_{n+1}^{k+2}\right)+\left(C_{n+1}^{k+2}+C^{k+3}_{n+1}\right)\)

\(=2C_{n+2}^{k+2}+C_{n+2}^{k+3}=C_{n+2}^{k+2}+\left(C_{n+2}^{k+2}+C_{n+2}^{k+3}\right)=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)

28 tháng 11 2017

Áp dụng ct:C(k)(n)=C(k)(n-1)+C(k-1)(n-1) có:
................C(k-1)(n-1)= C(k)(n) - C(k)(n-1)
tương tự: C(k-1)(n-2)= C(k)(n-1) - C(k)(n-2)
................C(k-1)(n-3)= C(k)(n-2) -C(k)(n-3)
.........................................
................C(k-1)(k-1)= C(k)(k) (=1)
Cộng 2 vế vào với nhau...-> đpcm

NV
19 tháng 6 2019

\(sin\left(\frac{2x}{3}-\frac{\pi}{3}\right)=0\Rightarrow\frac{2x}{3}-\frac{\pi}{3}=k\pi\Rightarrow\frac{2x}{3}=\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{\pi}{2}+\frac{k3\pi}{2}\)

NV
19 tháng 6 2019

\(sin\left(\frac{2x}{3}-60^0\right)=0\Rightarrow\frac{2x}{3}-60^0=k.180^0\)

\(\Rightarrow\frac{2x}{3}=60^0+k180^0\Rightarrow x=90^0+k270^0\)

Tất cả các đáp án đều sai, đề bài cho đơn vị độ nhưng đáp án lại cho đơn vị biểu diễn là radian

19 tháng 6 2019

D đúng mà bạn, đổi từ độ sang rad