Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a + 1 sẽ chia hết cho 2, 3, 4, .... 10
a + 1 = BCNN(2; 3; 4; ...; 10) = 2520
=> a = 2519
Lập bảng thay các giá trị nguyên trong khoảng vào hàm rồi calc x:
x=0 ra kq:-504
x=1 ra kq:-515(GTNN)
x=2 ra kq:-472
x=3 ra kq:-339(GTLN)
Câu 1: D
A sai vì BPT <=> 8x-4x>0
=>x>0
B sai vì BPT tương đương với 4x-8x>0
=>x<0
C sai vì nếu x=0 thì BPT này sai
1194007 - 23 = 1193984 chia hết cho n
158034 - 41 = 157993 chia hết cho n
n = ƯCLN(1193984; 157993) = 583
http://dethi.violet.vn/present/showprint/entry_id/11192189
coi link đó nha
\(A=\left(x-8\right)^2+2005\)
Ta có: \(\left(x-8\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x-8\right)^2+2005\ge2005\forall x\in Z\)
Dấu '=' xảy ra khi
\(\left(x-8\right)^2=0\Leftrightarrow x-8=0\Leftrightarrow x=8\)
Vậy: giá trị nhỏ nhất của biểu thức \(A=\left(x-8\right)^2+2005\) là 2005 khi x=8
\(B=\left(x-2\right)^2+\left(y-1\right)^2+3\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\in Z\)
\(\left(y-1\right)^2\ge0\forall y\in Z\)
Do đó: \(\left(x-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\in Z\)
\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2+3\ge3\forall x,y\in Z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x-2\right)^2+\left(y-1\right)^2+3\) là 3 khi x=2 và y=1
\(C=\left|x-5\right|+\left(x-y\right)^2+10\)
Ta có: \(\left|x-5\right|\ge0\forall x\in Z\)
\(\left(x-y\right)^2\ge0\forall x,y\in Z\)
Do đó: \(\left|x-5\right|+\left(x-y\right)^2\ge0\forall x,y\in Z\)
⇒\(\left|x-5\right|+\left(x-y\right)^2+10\ge10\forall x,y\in Z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-5\right|=0\\\left(x-y\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-5=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\5-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=5\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(C=\left|x-5\right|+\left(x-y\right)^2+10\) là 10 khi x=5 và y=5
\(D=\left|x-2\right|+\left|y+5\right|-10\)
Ta có: \(\left|x-2\right|\ge0\forall x\in Z\)
\(\left|y+5\right|\ge0\forall y\in Z\)
Do đó: \(\left|x-2\right|+\left|y+5\right|\ge0\forall x,y\in Z\)
\(\Rightarrow\left|x-2\right|+\left|y+5\right|-10\ge-10\forall x,y\in Z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|y+5\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(D=\left|x-2\right|+\left|y+5\right|-10\) là -10 khi x=2 và y=-5
Bấm mode - 5 -3 (giải pt bậc 2)
Nhập hệ số vào như bình thường, bấm "=" 2 lần (bỏ qua bước nghiệm ko cần quan tâm nghiệm bằng bao nhiêu)
Màn hình hiện X-value minimum, đó chính là giá trị x làm cho hàm đạt GTNN.
Bấm "=" tiếp, màn hình hiện Y-value minimum, đó là GTNN cần tìm
Bạn sẽ thấy đáp án C luôn
Nhìn vào 2 kết quả máy tính cho này, ta cũng có thể phân tách được luôn hàm về dạng hằng đẳng thức: \(y=2\left(x+\frac{1}{4}\right)^2-\frac{25}{8}\) mà ko cần suy nghĩ gì