Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do \(-1\le sinx\le1,\forall x\in R\).
Nên giá trị lớn nhất của \(y=3-4sinx\) bằng \(3-4.\left(-1\right)=7\)khi \(sinx=-1\)\(\Leftrightarrow x=-\dfrac{\pi}{2}+k\pi\).
Giá trị nhỏ nhất của \(y=3-4sinx\) bằng \(3-4.1=-1\) đạt được khi \(sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\).
b) \(y=2-\sqrt{cosx}\) xác định khi \(0\le cosx\le1\) .
Giá trị lớn nhất của \(y=2-\sqrt{cosx}=2-\sqrt{0}=2\) khi \(cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\).
Giá trị nhỏ nhất của \(y=2-\sqrt{cosx}=2-\sqrt{1}=1\) khi \(cosx=1\Leftrightarrow x=k2\pi\).
a) \(y=\sqrt{1-sin\left(x^2\right)}-1\) đạt giá trị lớn nhất là 1 , giá trị nhỏ nhất là - 1 ( để ý rằng u = x + \(\frac{\pi}{3}\) lấy mọi giá trị thực tùy ý khi x thay đổi ) , nên hàm số y = 2cos \(\left(x+\frac{\pi}{3}\right)\) + 3 đạt giá trị lớn nhất là y = 2 . 1 + 3 = 5 , giá trị nhỏ nhất là y = 2 . ( - 1 ) + 3 = 1
b) Hàm số y = 4sin |x| = đạt giá trị lớn nhất là 4 ( khi sin | x | = 1 tức là | x | = \(\frac{\pi}{2}\) + 2k\(\pi\) , k nguyên không âm ) , đạt giá trị nhỏ nhất - 4 ( khi sin | x | = \(-\frac{\pi}{2}+2k\pi\) , k nguyên dương )
\(y=\left(sinx+1\right)\left(sinx-5\right)\)
Do \(-1\le sinx\le1\Rightarrow\left\{{}\begin{matrix}sinx+1\ge0\\sinx-5< 0\end{matrix}\right.\)
\(\Rightarrow y\le0\Rightarrow y_{max}=0\) khi \(sinx=-1\)
\(y=sin^2x-4sinx+3-8=\left(1-sinx\right)\left(3-sinx\right)-8\)
Do \(-1\le sinx\le1\Rightarrow\left\{{}\begin{matrix}1-sinx\ge0\\3-sinx>0\end{matrix}\right.\) \(\Rightarrow\left(1-sinx\right)\left(3-sinx\right)\ge0\)
\(\Rightarrow y_{min}=-8\) khi \(sinx=1\)
Cưa cưa em hỏi ké phát, phương pháp chung của những dạng tìm gtnn,ln của hàm số lượng giác là biến đổi nó về dạng gì ạ? Và help me with question, pls:
Max: \(\sin^2x+\cos2x+\sin2x\)