K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

\(A=-x^2-4y^2+2x-12y-10\)

\(A=-\left(x^2-2x+1\right)-\left(4y^2-12y+9\right)\)

\(A=-\left(x-1\right)^2-\left(2y+3\right)^2\)

Vậy\(A_{max}=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)

31 tháng 8 2021

cảm ơn

 

a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)

\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)

Dấu '=' xảy ra khi 2x-4=0

\(\Leftrightarrow2x=4\)

hay x=2

Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2

b) Ta có: \(\left|x+2\right|\ge0\forall x\)

\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)

\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)

Dấu '=' xảy ra khi x+2=0

hay x=-2

Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2

DT
19 tháng 12 2023

a) \(A=-x\left(x-2\right)+2x-8=-x^2+2x+2x-8\\ =-x^2+4x-8\\ =-\left(x^2-4x+4\right)+4-8\\ =-\left(x-2\right)^2-4\)

Vì : \(\left(x-2\right)^2\ge0\forall x\)

\(=>-\left(x-2\right)^2\le0\)

\(=>A\le-4\)

Dấu = xảy ra khi : \(\left(x-2\right)^2=0=>x=2\)

Vậy GTLN bt A là : -4 tại x = 2

DT
19 tháng 12 2023

b) \(B=-x^2+6x-11\\ =-\left(x^2-6x+9\right)+9-11\\ =-\left(x-3\right)^2-2\le-2\forall x\)

Dấu = xảy ra khi : \(\left(x-3\right)^2=0=>x=3\)

Vậy GTLN của B là : -2 tại x = 3

a/ Để A nhỏ nhất thì |x-7| là nhỏ nhất

=> |x-7| = 0 

Vậy GTNN của A là : 0-1= -1 

19 tháng 1 2017

Bắt quả tang dũng nhá!~

2 tháng 9 2020

Ta có : \(x^2+y^2=4< =>x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(< =>4\ge\frac{\left(x+y\right)^2}{2}< =>\left(x+y\right)^2\le4.2=8< =>x+y\le\sqrt{8}\)

Hay \(x+y\le\sqrt{8}\)

Dấu = xảy ra khi và chỉ khi \(x=y=\sqrt{2}\)

Vậy GTLN của P = \(\sqrt{8}\)đạt được khi và chỉ khi \(x=y=\sqrt{2}\)

23 tháng 2 2020

B =2012-| 3x + 3 | - ||x+3| + 2x| 

Ta có \(\hept{\begin{cases}\left|3x+3\right|\ge0\\\left|\left|x+3\right|+2x\right|\ge0\end{cases}\forall x}\)

\(\Leftrightarrow\left|3x+3\right|+\left|\left|x+3\right|+2x\right|\ge0\forall x\)

\(\Leftrightarrow-\left|3x+3\right|-\left|\left|x+3\right|+2x\right|\le0\forall x\)

\(\Leftrightarrow2012-\left|3x+3\right|-\left|\left|x+3\right|+2x\right|\le2012\forall x\)

\(\Leftrightarrow B\le2012\forall x\).

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|3x+3\right|=0\\\left|\left|x+3\right|+2x\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+3=0\\\left|x+3\right|+2x=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x=-3\\\left|x+3\right|=-2x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\\left|-1+3\right|=-2.\left(-1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\2=2\end{cases}}\)

<=> x = 1

Vậy Max  = 2012 <=> x = 1

y ở đâu v bạn ~~?????

@@ Học tốt

Chiyuki Fujito

23 tháng 2 2020

                                                                  Bài giải

Ta có : \(B=2012-\left|3x+3\right|-||x+3|+2x|=2012-\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\)

B đạt GTLN khi \(\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\)đạt GTNN

Đặt \(C=\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\ge|3x+3+\text{ | }x+3\text{ |}+2x|\text{ }=\left|5x+3\text{ + | }x+3\text{ | }\right|\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}x\ge-1\text{ hoặc }x\le-1\\x=-1\end{cases}}\)

Vậy Min C = 0 khi x = - 1

Vậy Max B = 2012 khi x = - 1

12 tháng 7 2018

\(a,A=4+\left|x-\frac{2}{5}\right|\)

Có \(\left|x-\frac{2}{5}\right|\ge0\)

\(\Rightarrow A\ge4+0=4\)

Dấu "=" xảy ra khi \(x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)

Vậy Min A = 4 \(\Leftrightarrow x=\frac{2}{5}\)

1 tháng 1 2019

Ta có : \(N=2x-2x^2-5\)

\(=-\left(2x^2-2x+5\right)\)

\(=-\left[\left(\sqrt{2}x\right)^2-2.\sqrt{2}.x.\frac{\sqrt{2}}{2}+\left(\frac{\sqrt{2}}{2}\right)^2-\left(\frac{\sqrt{2}}{2}\right)^2+5\right]\)

\(=-\left[\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2-\frac{1}{2}+5\right]\)

\(=-\left[\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2+\frac{9}{2}\right]\)

Vì \(\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2\ge0\)với mọi x

nên \(\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)với mọi x

\(\Rightarrow-\left[\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2+\frac{9}{2}\right]\le-\frac{9}{2}\)với mọi x

Dấu "=" xảy ra khi \(\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2=0\)

                      \(\Rightarrow\sqrt{2}x-\frac{\sqrt{2}}{2}=0\Rightarrow x=\frac{1}{2}\)

Vậy GTLN của biểu thức trên là \(\frac{-9}{2}\)khi x=\(\frac{1}{2}\)

!!Chúc học tốt!!!