K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

Chọn C.

Với m = 1 thỏa mãn yêu cầu bài toán

Với m ≠ 1 phương trình vô nghiệm khi và chỉ khi Δ' < 0

⇔ (m - 1 ) 2  - 2m(m - 1) < 0 ⇔ (m - 1)(-m - 1) < 0

Đề thi Học kì 2 Toán 10 có đáp án (Đề 3)

Vậy với Đề thi Học kì 2 Toán 10 có đáp án (Đề 3) thì phương trình có nghiệm

20 tháng 12 2022

Câu 1:
ĐKXĐ: x>=3

\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)

=>x-3=(2x-m)^2

=>4x^2-4xm+m^2=x-3

=>4x^2-x(4m-1)+m^2+3=0

Δ=(4m-1)^2-4*4*(m^2+3)

=16m^2-8m+1-16m^2-48

=-8m-47

Để phương trình có nghiệm thì -8m-47>=0

=>m<=-47/8

28 tháng 7 2021

\(mx^2-2\left(m+2\right)x+2m-1< 0\)

\(< =>mx^2-2\left(m+2\right)x+2m-1\ge0\)

\(a=m\ne0\)

\(\Delta=\left(2m+2\right)^2-4m\left(2m-1\right)\)

\(\Delta=4m^2+8m+4-8m^2+4m\)

\(\Delta=12m-4m^2+4\)

\(< =>\hept{\begin{cases}a>0\\\Delta\le0\end{cases}\hept{\begin{cases}m>0\\12m-4m^2+4\le0\end{cases}\hept{\begin{cases}m>0\\m=\left[\frac{3-\sqrt{13}}{2};\frac{3+\sqrt{13}}{2}\right]\end{cases}}}}\)

\(< =>m=(0;\frac{3+\sqrt{13}}{2}]\)

vậy m vô số nghiệm để bpt vô nghiệm

26 tháng 6 2020

x2 - 2.(m+1)x + 2m + 1 = 0

\(\Delta^'\) = m2 + 2m + -2m -1 = m2 \(\ge0\forall m\)

=> pt có 2 nghiệm x1 , x2 \(\Leftrightarrow m\ne0\)

Theo hệ thức vi -ét , ta có: x1 + x2 = 2(m+1) , x1.x2 = 2m + 1

Ta có 0< x1 < x2 < 3

\(\Rightarrow\left\{{}\begin{matrix}x1.x2>0\\\left(x1-3\right).\left(x2-3\right)>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2m+1>0\\x1.x2-3.\left(x1+x2\right)+9>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>\frac{-1}{2}\\2m+1-6m-6+9>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>\frac{-1}{2}\\m< 1\end{matrix}\right.\)

\(\Rightarrow\frac{-1}{2}< m< 1\)

#mã mã#

NV
1 tháng 5 2020

1.

\(\Delta'=1-m>0\Rightarrow m< 1\)

Để pt có 2 nghiệm t/m đề bài

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2< 4\end{matrix}\right.\) \(\Rightarrow0< m< 1\)

2. Để pt có 2 nghiệm pb

\(\left\{{}\begin{matrix}m\ne2\\\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m< 6\end{matrix}\right.\)

Để 2 nghiệm đều dương: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m}{m-2}>0\\x_1x_2=\frac{m+3}{m-2}>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -3\end{matrix}\right.\)

Kết hợp lại: \(\left[{}\begin{matrix}2< m< 6\\m< -3\end{matrix}\right.\)

3. Đặt \(f\left(x\right)=\left(m-3\right)x^2+\left(m-1\right)x+m\)

Để pt có 2 nghiệm thỏa mãn đề bài

\(\Leftrightarrow\left(m-3\right).f\left(2\right)< 0\)

\(\Leftrightarrow\left(m-3\right)\left(7m-14\right)< 0\Rightarrow2< m< 3\)

16 tháng 3 2017

Đáp án: A

26 tháng 11 2021

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)

 

 

 

5 tháng 12 2021

A

5 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-1=0\\m^2-2m-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\pm1\\m\ne-1;m\ne3\end{matrix}\right.\Leftrightarrow m=1\)

Chọn A