Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1)Phương trình đã cho tương đương với:
√3x2−7x+3−√3x2−5x−1=√x2−2−√x2−3x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
⇔−2x+4√3x2−7x+3+√3x2−5x−1=3x−6√x2−2+√x2−3x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23≤x≤723≤x≤7
Phương trình đã cho tương đương với:
3x−18√3x−2+4+x−6√7−x−1+(x−6)(3x2+x−2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0
⇔(x−6)(3√3x−2+4+1√7−x−1+3x2+x−2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0
⇔x=6⇔x=6
vì với 23≤x≤723≤x≤7
thì: (3√3x−2+4+1√7−x−1+3x2+x−2)(33x−2+4+17−x−1+3x2+x−2)>0
a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2
Do đó VT=VP khi x=2
b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:
\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)
\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)
Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:
\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)
Đối chiếu ĐK của t
\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)
\(Đkxđ:x\ge0\)
Ta có: Bất phương trình tương đương với:
\(\left(1+\sqrt{x}\right)\left(\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}\right)=2\)
Áp dụng BĐT Cô - si ta có:
\(\frac{1}{\sqrt{3x+1}}=\sqrt{\frac{1}{x+1}.\frac{x+1}{3x+1}}\le\frac{1}{2}\left(\frac{1}{x+1}+\frac{x+1}{3x+1}\right)\)
\(\sqrt{\frac{x}{3x+1}}=\sqrt{\frac{1}{2}.\frac{2x}{3x+1}}\le\frac{1}{2}\left(\frac{1}{2}+\frac{2x}{3x+1}\right)\)
\(\Rightarrow\frac{1+\sqrt{x}}{\sqrt{3x+1}}\le\frac{1}{2}\left(\frac{1}{x+1}+\frac{1}{2}+1\right)=\frac{1}{2}\left(\frac{1}{x+1}+\frac{3}{2}\right)\left(1\right)\)
\(\frac{1}{\sqrt{x+3}}=\sqrt{\frac{1}{2}.\frac{2}{x+3}}\le\frac{1}{2}\left(\frac{1}{2}+\frac{2}{x+3}\right)\)
\(\frac{\sqrt{x}}{\sqrt{x+3}}=\sqrt{\frac{x}{x+1}.\frac{x+1}{x+3}}\le\frac{1}{2}\left(\frac{x}{x+1}+\frac{x+1}{x+3}\right)\)
\(\Rightarrow\frac{1+\sqrt{x}}{\sqrt{x+3}}\le\frac{1}{2}\left(\frac{x}{x+1}+\frac{3}{2}\right)\left(2\right)\)
Từ: \(\left(1\right)\left(2\right)\Rightarrow\left(1+\sqrt{x}\right)\left(\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}\right)\le\frac{1}{2}\left(\frac{1}{x+1}+\frac{x}{x+1}+3\right)=2\)
Đẳng thức xảy ra \(\Leftrightarrow x=1\)
Vậy nghiệm của pt là \(x=1\)
a: \(\Leftrightarrow\sqrt{2x-1}\left(\sqrt{2x+1}-2\right)=0\)
=>2x-1=0 hoặc 2x+1=4
=>2x=1 hoặc 2x=3
=>x=3/2 hoặc x=1/2
b: \(\Leftrightarrow3x+2=2\left(x+2\right)\)
=>3x+2=2x+4
=>x=2(nhận)
Lời giải:
ĐKXĐ: \(2\leq x\leq 7\)
PT \(\Leftrightarrow (x^2-3x)+(1-\sqrt{x-2})+(2-\sqrt{7-x})=0\)
\(\Leftrightarrow x(x-3)-\frac{x-3}{\sqrt{x-2}+1}+\frac{x-3}{\sqrt{7-x}+2}=0\)
\(\Leftrightarrow (x-3)\left[x-\frac{1}{\sqrt{x-2}+1}+\frac{1}{\sqrt{7-x}+2}\right]=0\)
Ta thấy: \(x\geq 2>1; \sqrt{x-2}+1\geq 1\Rightarrow \frac{1}{\sqrt{x-2}+1}\leq 1; \frac{1}{\sqrt{7-x}+2}>0\)
\(\Rightarrow x-\frac{1}{\sqrt{x-2}+1}+\frac{1}{\sqrt{7-x}+2}>0\)
\(\Rightarrow x-\frac{1}{\sqrt{x-2}+1}+\frac{1}{\sqrt{7-x}+2}\neq 0\)
Do đó: \(x-3=0\Leftrightarrow x=3\) (thỏa mãn)
Vậy PT có nghiệm $x=3$