\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+......... +\dfrac{1}{2^{2018}}\).Tính F
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

\(F=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2018}}\)

\(\dfrac{1}{2}F=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2019}}\)

\(F-\dfrac{1}{2}F=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2018}}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-\dfrac{1}{2^4}-...-\dfrac{1}{2^{2019}}\)

\(\dfrac{1}{2}F=\dfrac{1}{2}-\dfrac{1}{2^{2019}}\)

\(F=\left(\dfrac{1}{2}-\dfrac{1}{2^{2019}}\right):\dfrac{1}{2}\)

\(F=\left(\dfrac{1}{2}-\dfrac{1}{2^{2019}}\right).2\)

\(F=1-\dfrac{1}{2^{2018}}\)

21 tháng 7 2018

Cách khác Violympic toán 7

1 tháng 8 2018

\(f\left(1\right)=-\dfrac{3}{2}.1=-\dfrac{3}{2}\)

\(f\left(-1\right)=-\dfrac{3}{2}.\left(-1\right)=\dfrac{3}{2}\)

\(f\left(2\right)=-\dfrac{3}{2}.2=-3\)

\(f\left(-2\right)=-\dfrac{3}{2}.\left(-2\right)=3\)

\(f\left(\dfrac{1}{2}\right)=-\dfrac{3}{2}.\dfrac{1}{2}=\dfrac{-3}{4}\)

\(f\left(-\dfrac{1}{2}\right)=-\dfrac{3}{2}.\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\)

\(f\left(a\right)< f\left(-a\right)\)

AH
Akai Haruma
Giáo viên
19 tháng 4 2018

Lời giải:

Ta có:

\(f(x)=x^2+x\Rightarrow \frac{1}{f(x)}=\frac{1}{x^2+x}=\frac{1}{x(x+1)}=\frac{1}{x}-\frac{1}{x+1}\)

Do đó:

\(\frac{1}{f(1)}=1-\frac{1}{2}\)

\(\frac{1}{f(2)}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{f(3)}=\frac{1}{3}-\frac{1}{4}\)

......

\(\frac{1}{f(2014)}=\frac{1}{2014}-\frac{1}{2015}\)

\(\frac{1}{f(2015)}=\frac{1}{2015}-\frac{1}{2016}\)

Cộng theo vế:
\(\frac{1}{f(1)}+\frac{1}{f(2)}+\frac{1}{f(3)}+...+\frac{1}{f(2014)}+\frac{1}{f(2015)}=1-\frac{1}{2016}\)

\(=\frac{2015}{2016}\)

10 tháng 12 2018

Làm mau hộ mik

\(C=25\cdot\dfrac{-1}{27}+\dfrac{1}{5}-2\cdot\dfrac{1}{4}-\dfrac{1}{2}\)

\(=-\dfrac{25}{27}+\dfrac{1}{5}-1=-\dfrac{233}{135}\)

\(D=\dfrac{9}{4}-\dfrac{5}{6}-\dfrac{1}{4}=2-\dfrac{5}{6}=\dfrac{7}{6}\)

27 tháng 7 2018

a. \(x:3\dfrac{1}{15}=1\dfrac{1}{2}\)

\(x:\dfrac{46}{15}=\dfrac{3}{2}\)

\(x=\dfrac{3}{2}.\dfrac{46}{15}=\dfrac{23}{5}\)

b. \(x.\dfrac{3}{2}=-\dfrac{7}{6}\)

\(x=-\dfrac{7}{6}:\dfrac{3}{2}=-\dfrac{7}{9}\)

c. \(\dfrac{5}{6}+\dfrac{1}{4}:x=-\dfrac{2}{3}\)

\(\dfrac{13}{12}:x=-\dfrac{2}{3}\)

\(x=\dfrac{13}{12}:\left(-\dfrac{2}{3}\right)=-\dfrac{13}{8}\)

Còn lại tương tự thôi

\(\)

27 tháng 7 2018

lm mấy câu còn lại đi bn

\(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{2}{2016}+\dfrac{1}{2017}\)

\(=\left(\dfrac{2016}{2}+1\right)+\left(\dfrac{2015}{3}+1\right)+...+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{1}{2017}+1\right)+1\)

\(=\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\)

\(=2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)

Theo đề, ta có: \(x=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}}=2018\)

3 tháng 11 2018

f, \(\dfrac{2^9.4^{10}}{8^8}=\dfrac{2^9.\left(2^2\right)^{10}}{\left(2^3\right)^8}=\dfrac{2^9.2^{20}}{2^{24}}=\dfrac{2^{29}}{2^{24}}=2^5=32\)

16 tháng 11 2022

a: \(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\dfrac{14}{25}+\dfrac{11}{25}+\dfrac{2}{7}=\dfrac{2}{7}\)

b: \(=\dfrac{3}{7}-\dfrac{5}{2}-\dfrac{3}{5}+\dfrac{4}{7}+\dfrac{3}{2}-\dfrac{2}{5}=1-1-1=-1\)

c: \(=\dfrac{4}{25}+\dfrac{7}{5}\cdot\dfrac{5}{2}-2=\dfrac{4}{25}+\dfrac{7}{2}-2=\dfrac{83}{50}\)

29 tháng 1 2019

Theo bài ra, ta có: \(B=\dfrac{2018}{1}+\dfrac{2017}{2}+\dfrac{2016}{3}+...+\dfrac{1}{2018}\)

\(B=\left(\dfrac{2018}{1}+1\right)+\left(\dfrac{2017}{2}+1\right)+\left(\dfrac{2016}{3}+1\right)+...+\left(\dfrac{1}{2018}+1\right)-2018\)

\(B=2019+\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}-2018\)

\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+\left(2019-2018\right)\)

\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+1\)

\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+\dfrac{2019}{2019}\)

\(B=2019\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}\right)\)

Khi đó:\(\dfrac{B}{A}=\dfrac{2019\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}}\)

\(\Rightarrow\dfrac{B}{A}=2019\), là 1 số nguyên.

Vậy \(\dfrac{B}{A}\) là số nguyên.

21 tháng 12 2017

\(A=2x^2-2\ge-2\)

Dấu "=" xảy ra khi: \(x=0\)

\(B=\left|x+\dfrac{1}{3}\right|-\dfrac{1}{6}\ge-\dfrac{1}{6}\)

Dấu "=" xảy ra khi: \(x=-\dfrac{1}{3}\)

\(C=\dfrac{\left|x\right|+2017}{2018}\ge\dfrac{2017}{2018}\)

Dấu "=" xảy ra khi: \(x=0\)

\(D=3-\left(x+1\right)^2\le3\)

Dấu "=" xảy ra khi: \(x=-1\)

\(E-\left|0,1+x\right|-1,9\le-1,9\)

Dấu "=" xảy ra khi: \(x=-0,1\)

\(F=\dfrac{1}{\left|x\right|+2017}\le\dfrac{1}{2017}\)

Dấu "=" xảy ra khi: \(x=0\)

a: \(\Leftrightarrow\dfrac{7}{2}x-\dfrac{3}{4}=\dfrac{1}{2}x+\dfrac{5}{2}\)

\(\Leftrightarrow3x=\dfrac{5}{2}+\dfrac{3}{4}=\dfrac{10}{4}+\dfrac{3}{4}=\dfrac{13}{4}\)

=>x=13/12

b: \(\Leftrightarrow x\cdot\left(\dfrac{2}{3}-\dfrac{1}{2}\right)=-\dfrac{1}{3}+\dfrac{2}{5}\)

\(\Leftrightarrow x\cdot\dfrac{1}{6}=\dfrac{-5+6}{15}=\dfrac{1}{15}\)

\(\Leftrightarrow x=\dfrac{1}{15}:\dfrac{1}{6}=\dfrac{2}{5}\)

c: \(\Leftrightarrow x\cdot\dfrac{1}{3}+x\cdot\dfrac{2}{5}+\dfrac{2}{5}=0\)

\(\Leftrightarrow x\cdot\dfrac{11}{15}=-\dfrac{2}{5}\)

\(\Leftrightarrow x=-\dfrac{2}{5}:\dfrac{11}{15}=\dfrac{-2}{5}\cdot\dfrac{15}{11}=\dfrac{-30}{55}=\dfrac{-6}{11}\)

d: \(\Leftrightarrow-\dfrac{1}{3}x+\dfrac{1}{2}+\dfrac{2}{3}-x-\dfrac{1}{2}=5\)

\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{2}{3}=5\)

\(\Leftrightarrow-\dfrac{4}{3}x=5-\dfrac{2}{3}=\dfrac{13}{3}\)

\(\Leftrightarrow x=\dfrac{13}{3}:\dfrac{-4}{3}=\dfrac{-13}{4}\)

e: \(\Leftrightarrow\left(\dfrac{x+2015}{5}+1\right)+\left(\dfrac{x+2016}{4}+1\right)=\left(\dfrac{x+2017}{3}+1\right)+\left(\dfrac{x+2018}{2}+1\right)\)

=>x+2020=0

hay x=-2020