Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x = 1 ; x = 2 là nghiệm của đa thức :
\(\Rightarrow f\left(1\right)=f\left(2\right)=0\)
\(\Rightarrow\begin{cases}f\left(1\right)=1^3+a.1^2+b.1+c=0\left(1\right)\\f\left(2\right)=2^3+a.2^2+b.2+c=0\left(2\right)\end{cases}\)
(1) \(\Rightarrow1+a+b+c=0\)
\(\Rightarrow1+\left(-16\right)+c=0\)
\(\Rightarrow c=15\) (3)
(2) \(\Rightarrow8+4a+2b+c=0\) ( 4)
Kết hợp (3) và (4)
\(\Rightarrow8+2\left(a+b\right)+2b+15=0\)
\(\Rightarrow8+\left(-32\right)+2b+15=0\)
\(\Rightarrow2b-9=0\)
\(\Rightarrow b=\frac{9}{2}\)
\(\Rightarrow a=-\frac{41}{2}\)
\(\frac{x-1}{x^2-1}=\frac{x-1}{\left(x-1\right)\left(x+1\right)}=\frac{1}{x+1}\)
Vậy a=1 đó
Vì m, n là số nguyên tố nên m, n > 0
7m+n=31 suy ra \(7m\le31\)và \(7m⋮7\)\(\Rightarrow7m\in\left\{14;21;28\right\}\)
\(\Rightarrow m\in\left\{2;3;4\right\}\)\(\Rightarrow n\in\left\{17;10;3\right\}\)
Ta loại trường hợp n=10 và m=4 đi vì 10 và 4 là hợp số khi đó chỉ còn cặp số \(\left(m;n\right)=\left(2;17\right)\)
Khi đó \(m^n+n^m=2^{17}+17^2=131072+289=131361\)
Giá trị của M là 0
Vì a+b+c=0
Đ/s:..................
**** nha thanks
Câu 1: \(P=\frac{3x^2-3x+3}{3\left(x^2+x+1\right)}=\frac{x^2+x+1+2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}=\frac{x^2+x+1}{3\left(x^2+x+1\right)}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\)
= \(\frac{1}{3}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\frac{1}{3}\), với mọi x. Dấu = xảy ra khi x- 1 =0 <=> x =1
Vậy Min P = 1/3 <=> x = 1
Tìm Max : \(P=\frac{3x^2+3x+3-2\left(x^2+2x+1\right)}{x^2+x+1}=3-\frac{2\left(x+1\right)^2}{x^2+x+1}\le3\),với mọi x,
Dấu = xảy ra <=> x +1 = 0 <=> x = - 1
Vậy max P = 3 <=> x = -1