\(\dfrac{1}{x\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2017

a.\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\)=\(\dfrac{x+1}{x\left(x+1\right)}\)-\(\dfrac{x}{x\left(x+1\right)}\)=\(\dfrac{x+1-x}{x\left(x+1\right)}\)=\(\dfrac{1}{x\left(x+1\right)}\)

b. Ta có:

\(\dfrac{1}{x\left(x+1\right)}\)= \(\dfrac{\left(x+1\right)-x}{x\left(x+1\right)}\)=\(\dfrac{x+1}{x\left(x+1\right)}\)-\(\dfrac{x}{x\left(x+1\right)}\)=\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\)

Ta lại có:

\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)=\(\dfrac{1}{x+1}\)-\(\dfrac{1}{x+2}\);

\(\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)=\(\dfrac{1}{x+2}\)-\(\dfrac{1}{x+3}\);

\(\dfrac{1}{\left(x+3\right)\left(x+4\right)}\)=\(\dfrac{1}{x+3}\)-\(\dfrac{1}{x+4}\);

\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}\)=\(\dfrac{1}{x+4}\)-\(\dfrac{1}{x+5}\);

Do đó:

\(\dfrac{1}{x\left(x+1\right)}\)+\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)+\(\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)+\(\dfrac{1}{\left(x+3\right)\left(x+4\right)}\)+\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}\)+\(\dfrac{1}{x+5}\) = \(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\)+\(\dfrac{1}{x+1}\)-\(\dfrac{1}{x+2}\)+\(\dfrac{1}{x+2}\)-...... -\(\dfrac{1}{x+5}\)+\(\dfrac{1}{x+5}\)=\(\dfrac{1}{x}\)

Vậy tổng trên bằng \(\dfrac{1}{x}\)

a)

\(\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{x+1-x}{x\left(x+1\right)}=\dfrac{1}{x\left(x+1\right)}\left(đpcm\right)\)

b)

\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{x+5}\\ =\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}\\ =\dfrac{1}{x}\)

\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+5}-\dfrac{1}{x+6}\)

=1/x-1/x+6

\(=\dfrac{x+6-x}{x\left(x+6\right)}=\dfrac{6}{x\left(x+6\right)}\)

a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3+2x^2-x=5x\left(2-x\right)-11\left(x+2\right)\)

=>-x^2+2x-1=10x-5x^2-11x-22

=>-x^2+2x-1=-5x^2-x-22

=>4x^2+3x+21=0

=>PTVN

b: \(\Leftrightarrow\left(x+10\right)\left(x+4\right)+3\left(x+4\right)\left(x-2\right)=4\left(x+10\right)\left(x-2\right)\)

=>x^2+14x+40+3(x^2+2x-8)=4(x^2+8x-20)

=>x^2+14x+40+3x^2+6x-24=4x^2+32x-80

=>20x+16=32x-80

=>-12x=-96

=>x=8

c: \(\Leftrightarrow6\left(x-3\right)+7\left(x-5\right)=13x+4\)

=>6x-18+7x-35=13x+4

=>-53=4(loại)

d: =>3(2x-1)-5(x-2)=3(x+7)

=>6x-3-5x+10=3x+21

=>3x+21=x+7

=>x=-7

e: =>x^3-6x^2+12x-8-x^3-3x^2-3x-1=-9x^2+1

=>-9x^2+9x-9=-9x^2+1

=>9x=10

=>x=10/9

30 tháng 4 2018

a) 4x -8 ≥ 3(3x-1)-2x +1

⇒4x -8 ≥7x -2

⇒4x -7x ≥ -2 +8

⇒-3x ≥ 6

⇒x≤-2

Vậy bpt có nghiệm là:{x|x≤-2}

30 tháng 4 2018

b) (x-3)(x+2)+(x+4)2≤ 2x (x+5)+4

⇔ x2+2x - 3x - 6 +x2 + 8x +16≤ 2x2 + 10x +4

⇔ x2 +2x - 3x + x2 + 8x - 2x2- 10x ≤ 4+6-16

⇔ -3x ≤ -6

⇔ x≥ 2

Vậy bpt có tập nghiệm là: {x|x≥2}