K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2020

p nguyên tố thì làm sao p^2 nguyên tố đc bạn ? Đề sai rồi!

9 tháng 3 2020

Tớ sửa đề bài :

Cho p và p2 + 2 là các số nguyên tố . Chứng tỏ p2 + p3 + 1 là cũng là số nguyên tố .

Bài làm :

+ Xét p = 2 

Khi đó : p2 + 2 = 6 ( hợp số ) ( loại )

+ Xét p = 3

Khi đó : p2 + 2 = 11 ( nguyên tố )

p3 + p+ 1 = 33 + 33 + 1 = 37 ( nguyên tố )

Vậy p = 3 t/m đề bài

+ Xét p > 3

Suy ra : p không chia hết cho 3 .

\(\Rightarrow\)p2 chia cho 3 dư 1 .

Suy ra : p2 + 2 \(⋮\)3

Mà p2 + 2 là số nguyên tố nên p+ 2 = 3 . Suy ra : p = 1 ( loại )

Vậy với p > 3 ktm .

Tóm lại : p = 3

30 tháng 10 2019

1, Ta có: p, p+1, p+2 là 3 số liên tiếp nên chắc chắn có 1 số chia hết cho 3 -> p+1 hoặc p+2 chia hết cho 3

p+2+6=p+8 là snt nên ko chia hết cho 3 nên p+1 chia hết cho 3 -> p+1+99 = p+100 chia hết cho 3 -> là hợp số

2, a, Nếu p có dạng 6k,6k+2,6k+3,6k+4 thì chia hết cho 2 hoặc 3

b, Do p là snt > 3 nên 8p ko chia hết cho 3. Trong 3 số liên tiếp 8p,8p+1,8p+2 có 8p và 8p+1 ko chia hết cho 3 nên 8p+2 chia hết cho 3.

Chia cho 2, do(2,3) = 1 nên 4p+1 chia hết cho 3 là hợp số

30 tháng 10 2019

thanks bn HD Film nha

2 tháng 4 2020

a) VD: \(a=4;b=5\) có \(a^2+b^2=4^2+5^2=16+25=41\) là số nguyên tố 

Mà \(a+b=4+5=9\) là hợp số 

\(\Rightarrow\)Mệnh đề " Nếu \(a^2+b^2\) là số nguyên tố thì \(a+b\)cũng là số nguyên tố " sai 

b) Ta có : \(a^2-b^2=\left(a^2-ab\right)+\left(ab-b^2\right)\) 

\(\Rightarrow a^2-b^2=a\left(a-b\right)+b\left(a-b\right)\)

\(\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)\)

+) Nếu \(a-b>1\)

\(\Rightarrow a^2-b^2⋮\left(a+b\right)\) và \(a^2-b^2⋮\left(a-b\right)\)

\(\Rightarrow a^2-b^2\) là hợp số 

\(\Rightarrow\)Mâu thuẫn 

\(\Rightarrow a-b=1\)

\(\Rightarrow a^2-b^2=a+b\)

Mà \(a^2-b^2\) là số nguyên tố 

\(\Rightarrow a+b\) là số nguyên tố 

\(\Rightarrow\) Mệnh đề :  " Nếu \(a>b\)\(a^2-b^2\)là số nguyên tố thì \(a+b\) cũng là số nguyên tố " đúng   

1 tháng 11 2015

Ta có P là số nguyên tố > 3 nên P là số lẻ            (1) 

Vì P > 3 nên P có 2 dạng:

+ Nếu P = 3n + 1(n thuộc N), ta có:

P + 1 = 3n + 1 + 2 = 3n + 3 là hợp số, loại.

+ Nếu P = 3n + 2(n thuộc N), ta có:

P + 1 = 3n + 2 + 2 = 3n + 4 là số nguyên tố, chọn.

Thay P = 3n + 2 vào P + 1, ta có: 

3n + 2 + 1 = 3n + 3 = 3(n + 1)

Mà từ (1) => 3n + 2 là số lẻ.

=> 3n là số lẻ 

=> n là số lẻ

=> n + 1 là số chẵn và chia hết cho 2.

Vì n + 1 chia hết cho 2 => 3(n + 1) chia hết cho 2.

Mà 3 chia hết cho 3 => 3(n + 1) chia hết cho 3.

=> 3(n + 1) chia hết cho 6 (ƯCLN(2; 3) = 1)

 

Ba số tự nhiên liên tiếp là p ; p + 1 và p + 2 

Vì p và p + 2 đều là số nguyên tố nên số ở giữa p + 1 phải chia hết cho 2 ( 1 ) 

Mà 3 số tự nhiên liên tiếp phải có 1 số chia hết cho 3. Vì 2 số kia là số nguyên tố 

=> p + 1 chia hết cho 3 ( 2 ). Từ ( 1 ) ( 2 ) => p + 1 chia hết cho 2 và 3 <=> p + 1 chia hết cho 6

p là số nguyên tố lớn hơn 3 nên p lẻ, do đó p+1⋮⋮2 (1)

p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.

Dạng 3k+1 không xảy ra.

Dạng 3k+2 cho ta p+1⋮3 (2).

Từ (1) và (2) cho ta p+1⋮6

Số p có một trong ba dạng : 3k, 3k + 1, 3k + 2 với k E N*

Nếu p = 3k thì p = 3 ( vì p là số nguyên tố ), khi đó p + 2 = 5, p + 4 = 7 đều là các số nguyên tố.

Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số, trái với đề bài.

Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết chp 3 và lớn hơn 3 nên p + 4 là hợp số, trái với đề bài.

Vậy p = 3 là giá trị duy nhất phải tìm.

HT

+ Nếu p = 2 => p + 2 = 4 ∉∉ P (loại)

+ Nếu p = 3 => p + 2 = 5 ∈∈ P ; p + 4 = 7 ∈∈ P

+ Nếu p > 3 mà p là số nguyên tố nên p ⋮/⋮̸ 3 => p = 3k + 1; p = 3k + 2 (p ∈∈ N)

Trường hợp: p = 3k + 1 => p + 2 = 3k + 3 = 3(k + 1) 3

mà p > 3 nên p là hợp số

Trường hợp: p = 3k + 2 => p + 4 = 3k + 6 = 3(k + 2) 3

mà p > 3 nên p là hợp số

=> Không có giá trị nguyên tố p lớn hơn 3 nào thoả mãn.

Vậy p = 3 là giá trị duy nhất cần tìm.

21 tháng 11 2015

3 cần cách giải thì nói

5 tháng 7 2019

* Với p = 2 thì p4 + 2 = 24 + 2 = 18 là hợp số ( loại )

* Với p = 3 thì p4 + 2 = 34 + 2 = 83 là số nguyên tố ( thỏa mãn )

* Với p > 3: p là số nguyên tố

=> p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*).

+) p = 3k + 1: Ta có: p4 + 2  = ( 3k + 1 )4 + 2 = 3k4 + 4 + 2 = 3k4 + 6 = 3( k4 + 2 ) ⋮ 3 là hợp số (Loại)

+) p = 3k + 2: Ta có: p4 + 2 = ( 3k + 2 )4 + 2 =  3k4 + 16 + 2 =  3k4 + 18 = 3( k4 + 6 )  ⋮ 3 là hợp số (Loại).

Với p > 3 không có giá trị nào thỏa mãn yêu cầu của bài toán.

KL: p = 3 là thỏa mãn yêu cầu bài toán.

5 tháng 7 2019

+) Với P = 2 \(\Rightarrow p^4+2=2^4+2=16+2=18\)( không là SNT )

    \(\Rightarrow p=2\)( loại ) 

+) Với P= 3 \(\Rightarrow p^4+2=3^4+2=81+2=83\)( là SNT )

     \(\Rightarrow p=3\)( chọn )

+) Với p >3 \(\Rightarrow p\) có dạng  3k+1  ( k \(\in\)N* ) 

                                               3k+2 

+) Với p= 3p+1 \(\Rightarrow p^4+2=\left(3k+1\right)^4+2\)

                                            \(=\left(9k^2+6k+1\right)^2+2\)

                                            \(=81k^4+36k^2+1+108k^3+18k^2+12k+2\)

                                             \(=3.\left(27k^4+12k^2+1+36k^3+6k^2+4k\right)⋮3\)

                          Mà \(3.\left(27k^4+12k^2+1+36k^3+6k^2+4k\right)>3\)

\(\Rightarrow3.\left(27k^4+12k^2+1+36k^3+6k^2+4k\right)\)là hợp số 

 \(\Rightarrow p=3k+1\)( loại )

+) Với \(p=3k+2\Rightarrow p^4+2=\left(3k+2\right)^4+2\)

                                                      \(=\left(9k^2+12k+4\right)^2+2\)

                                                      \(=81k^4+144k^3+16+216k^3+72k^2+96k+2\)

                                                       \(=3.\left(27k^4+48k^3+6+72k^3+32k\right)⋮3\)

                 Mà \(3.\left(27k^4+48k^3+6+72k^3+32k\right)>3\)

\(\Rightarrow3.\left(27k^4+48k^3+6+72k^3+32k\right)\)là hợp số

      \(\Rightarrow p=3k+2\)(loại )

Vậy p=3