K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

a) Thay m=1 vào f(x) ta có :

f(x)=(1-2)x+2.1-3=(-1)x-1=0

(-1)x=1

x=1:(-1)

x=-1

Vậy nghiệm của f(x) là f(-1)

b) ta có f(-4)=(m-2).(-4)+2m-3=0

m.(-4)+8+2m-3=0

-2m+5=0

-2m=-5

m=-5:(-2)

m=5/2

c) mình k hiểu đề

16 tháng 7 2019

Bài 1: Viết mỗi biểu thức sau về dạng tổng (hiệu) 2 bình phương:

a. x2 - 2xy + 2y2 + 2y +1

= (x2 - 2xy + y2) +( y + 2y +1)

= (x-y)2 + (y+1)2

b. 4x- 12x - y+ 2y + 8

= (4x2 - 12x + 9 ) - (y2 - 2y  +1 )

= (2x-3)2 - (y-1)2

Số dữ và có cái vô nghiệm ... câu này nhìn qua con làm thôi.

a, \(5x^2-x+4=0\)

Ta có : \(\left(-1\right)^2-4.4.5=1-80=-79< 0\)

Nên phương trình vô nghiệm 

b, \(x^2+3x-2=0\)

Ta có : \(3^2-4.\left(-2\right)=9+8=17>0\)

Suy ra : \(x_1=\frac{-3-\sqrt{17}}{2};x_2=\frac{-3+\sqrt{17}}{2}\)

a, \(5x^2-x+4=0\)

Ta có : \(\left(-1\right)^2-4.4.5=1-80=-79< 0\)

Nên phương trình vô nghiệm 

b, \(x^2+3x-2=0\)

Ta có : \(3^2-4.\left(-2\right)=9+8=17>0\)

Suy ra : \(x_1=\frac{-3-\sqrt{17}}{2};x_2=\frac{-3+\sqrt{17}}{2}\)

21 tháng 8 2020

làm nốt câu này rồi đi ngủ 

\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)

Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN 

Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)

Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được : 

\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)

Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)

Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)

Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)

23 tháng 9 2020

a) B = | 2x - 3 | - 7

| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7

Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2

=> MinB = -7 <=> x = 3/2

C = | x - 1 | + | x - 3 |

= | x - 1 | + | -( x - 3 ) | 

= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2

Đẳng thức xảy ra khi ab ≥ 0

=> ( x - 1 )( 3 - x ) ≥ 0

=> 1 ≤ x ≤ 3

=> MinC = 2 <=> 1 ≤ x ≤ 3

b) M = 5 - | x - 1 |

- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MaxM = 5 <=> x = 1

N = 7 - | 2x - 1 |

- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7 

Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2

=> MaxN = 7 <=> x = 1/2